GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Abstract

Context and purpose of the study: Grapevine Red Blotch disease (RB) is a recently discovered disease that has become a major concern for the viticulture and winemaking industry in California, USA. The causal agent, Grapevine Red Blotch Virus (GRBV) was identified in 2011 and its presence was confirmed in several states in the US, in Canada, and in Switzerland. It has been demonstrated that RB compromised the regulation of ripening by suppressing specific ripening events, altering the expression patterns of transcription factors and causing hormonal imbalances in Zinfandel. For the last 4 years, our research group have been focusing on the impact of RB on grape and wine composition and wine sensory properties. Our prior work demonstrated that RB decreases sugar accumulation and delayed color development in the berry, resulting in wines with lower ethanol and anthocyanin concentration, thus affecting sensory attributes. The aim of this study was to determine the impact of RB on grape and wine composition and sensory properties when grapes were harvested sequentially.

Material and Methods: Cabernet Sauvignon and Merlot vineyards from two traditional grape growing regions in California, Napa Valley and Paso Robles respectively were selected in the 2016 and 2017 season. Grape berries from infected (RB +) and healthy (RB -) grapevines were collected weekly from veraison to harvest. RB (+) grapevines were harvested sequentially at two-time points: (1) at the same time as healthy vines – but lower Brix, and (2) later when Brix was similar to those of the healthy grapes at harvest. Brix, pH, titratable acidity (TA), sugar loading, phenolic composition by protein precipitation assay and RP-HPLC and volatile composition by HS-SPME-GC-MS were determined on grapes. Wines were made in triplicate from healthy, RB symptomatic*, and second harvest RB symptomatic* grapes and analyzed for % EtOH v/v, volatile acidity, TA, free and bound SO2, phenolic composition by RP-HPLC and protein precipitation, and volatile composition by HS-SPME-GC-MS. Wine sensory properties were determined by descriptive analyses.

Results: Chemical analysis demonstrated that RB impacts berry composition by increasing TA and decreasing Brix, sugar loading, anthocyanins, altering phenolic composition and sensory attributes. Wines made from RB (+) grapes harvested later had higher pH than wines made from healthy and first harvested RB (+) fruit. On the other hand, wines made from second harvest grapes from symptomatic vines showed less impact of the disease, producing wines with chemical, phenolic and volatile profiles as well as sensory properties more similar to wines made from healthy fruit when compared to wines made from first harvest RB (+) fruit.

*Grapevines showing RB disease symptoms

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Raul CAUDURO GIRARDELLO1*, Monica COOPER1, Rhonda SMITH1, Charles BRENNEMAN1, Anji PERRY2, Arran RUMBAUGH1, Hildegarde HEYMANN1 and Anita OBERHOLSTER1

1 Department of Viticulture and Enology, University of California, Davis, CA 95616-8749, USA
2 J. Lohr Vineyards and Wines, 6169 Airport Road, Paso Robles, CA 93446, USA

Contact the author

Keywords

Red Botch disease, grape composition, wine composition, phenolics, sensory

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Prospects for enlarging of microzone Manavi in the East Georgia

The experimental studies conducted in the eastern Georgia in Sagarejo administrative district on the foothills of the southern slope of Tsiv-Gombori range reveal the possibility of enlarging Manavi traditional specific zone to the north-west (from Giorgitsminda to Khashmi), at 500-750 m above sea level.

Geochemistry of Vrbničko Polje (Croatia) winegrowing site

A multi-element pedo-geochemical survey was carried out in Vrbničko polje vineyards on the Krk Island, Croatia. This Mediterranean winegrowing site is famous by Žlahtina wine production.

Climate change impacts on Douro Region viticulture and adaptation measures

Climate has a significant impact in the success of any agricultural system, with a direct influence on the crops suitability to a given region, interfering on yield and quality and also with the economic sustainability of the productive activity. In the Douro Demarcated Region (RDD), as in most regions of the Mediterranean climate, the scarce precipitation (33% has less than 600 mm per year), and your high variability, associated with high rates of evapotranspiration during the summer, is usually one of the fundamental factors that limit the grapevine development, as well as the production and quality of the harvest. Thus, facing the scenario in temperature changes for the next decades (1.5-2.5°C) and confirming the predictions of precipitation decreases and/or great variability in the occurrence of heat waves and intense rainfall, the consequences for slope stability in mountain viticulture and sustainability of all operations involved, are risks to be taken into account. In this way, a deepest and sustained knowledge regarding the adaptation measures to adverse environmental conditions is of a crucial importance, enabling a more efficient adaptation of plant growth conditions and the optimization of production and quality of the grapevines. The development of this work, carried out in two commercial vineyards, one located in Soutelo do Douro, São João da Pesqueira, Cima Corgo sub-region, and another located in Numão, Vila Nova de Foz Côa, Douro Superior sub-region, it seeks to establish a relationship between climatic elements and physiological, productive and qualitative parameters, as well as to evaluate the effectiveness of adaptation measures, including different types of deficit irrigation (2002-2019) and the application of shading nets (2019-2020) in the physiological, viticultural and oenological behavior in the Touriga Nacional and Moscatel Galego Branco varieties, respectively. The results showed that the application of deficit irrigation allowed to significantly reduce the impact of the adverse weather conditions at key moments in the development of the grapevine, particularly in the period immediately before veráison and maturation, reducing the negative effects on the physiological processes and productivity, without compromise the must quality parameters. On the other hand, the application of shading nets significantly reduced de leaves temperature, allowing to increase the water potential, stomatal conductance and photosynthetic rate of grapes, which was reflected in the yield increase in the 2nd year of the study. For the maturation indicators, higher levels of total acidity, malic acid and assimilable nitrogen were obtained. The last measure presents a huge potential, being essential to carry out more years of trials to obtain stronger conclusions in terms of production parameters, but also in characteristics as important as the grape ripening components and the organoleptic characteristics of wines.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.