OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Abstract

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine. Although, wine exhibits harsh and challenging conditions (low pH, low temperature, nutrient-poor and presence of ethanol), O. oeni possesses a remarkable adaptability to those physiochemical conditions.

Mechanisms for responding to environmental changes are universally present in living beings and are essential for coping with the stress and for adapting to the new conditions. O. oeni tolerance to low pH and ethanol make its an interesting bacteria model for investigating stress response mechanism in lactic acid bacteria. However, lack of appropriate techniques to manipulate O. oeni genome has long delay molecular study of this fastidious bacterium. To get around the lack of genetic tool for gene replacement, we focused our work on gene inactivation by using antisense RNA approach to modulate gene expression. With the goal to understanding the function of O. oeni hsp genes in vivo, we produce antisense RNA targeting genes encoding: a small Hsp (hsp18)1, the master regulator of stress response (ctsR)2 and two caseinolytic protease L members of the HSP100 chaperone family (clpL1, clpL2). Thereby, we highlighted that in vivo inhibition of the expression of some of these genes strongly affects the survival of O. oeni in stress conditions.

This study presents an elegant approach providing access to an in vivo study of gene function in O. oeni.

References:

1. Darsonval, M., Msadek, T., Alexandre, H. & Grandvalet, C. The Antisense RNA Approach: a New Application for In Vivo Investigation of the Stress Response of Oenococcus oeni, a Wine-Associated Lactic Acid Bacterium. Appl. Environ. Microbiol. 82, 18–26 (2016).

2. Darsonval, M., Julliat, F., Msadek, T., Alexandre, H. & Grandvalet, C. CtsR, the Master Regulator of Stress-Response in Oenococcus oeni, Is a Heat Sensor Interacting With ClpL1. Front Microbiol 9, (2018).

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Cosette Grandvalet, Frédérique Julliat, Maud Darsonval, Tarek Msadek, Hervé Alexandre

UMR A 02.102 Procédés Alimentaires et Microbiologiques, AgroSup Dijon – Université de Bourgogne Franche-Comté, Dijon, FRANCE.
Unité de Biologie des Bactéries Pathogènes àGram Positif, Institut Pasteur, Paris, FRANCE.
CNRS ERL 6002, Paris, FRANCE.

Contact the author

Keywords

Oenococcus oeni, lactic acid bacteria, antisense RNA , stress response 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Vitamin content of grape musts and yeast nutrition: A review

The management of yeast nutrition is an essential approach for a better control over wine fermentation process. Most of the researches on this subject in the last decades focused on nitrogen nutrition. However, vitamins, while being key compounds for yeast metabolism as co-factors for numerous enzymatic activities, were left mostly unexplored.

Iso-/anisohydric behavior in wine grapes may be a matter of soil moisture

There are claims that wine grape cultivars are either isohydric or anisohydric; the former maintaining, and the latter decreasing, their plant water status as soil moisture declines. However, available information is inconsistent. There are those that show an existence of a continuum in cultivar response to soil moisture rather than a distinct categorization. Others even show both behaviors in the same cultivar grown in different environments. In this study we investigated the behavior of 30 own rooted Vitis vinifera cultivars during successive drydown and rewatering cycles over two growing seasons in arid eastern Washington (<200 mm annual precipitation).

The valorization of wine lees as a source of mannoproteins for food and wine applications

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1].

Circular economy strategies to reintegrate grape pomace from cv. Lagrein into the food chain

The project REALISM (regionality and circular economy in food products to counteract the Metabolic Syndrome (M.S.)) was initiated to develop antioxidant-rich food products with the ability to reduce the risk of developing the M.S.

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.