OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Abstract

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine. Although, wine exhibits harsh and challenging conditions (low pH, low temperature, nutrient-poor and presence of ethanol), O. oeni possesses a remarkable adaptability to those physiochemical conditions.

Mechanisms for responding to environmental changes are universally present in living beings and are essential for coping with the stress and for adapting to the new conditions. O. oeni tolerance to low pH and ethanol make its an interesting bacteria model for investigating stress response mechanism in lactic acid bacteria. However, lack of appropriate techniques to manipulate O. oeni genome has long delay molecular study of this fastidious bacterium. To get around the lack of genetic tool for gene replacement, we focused our work on gene inactivation by using antisense RNA approach to modulate gene expression. With the goal to understanding the function of O. oeni hsp genes in vivo, we produce antisense RNA targeting genes encoding: a small Hsp (hsp18)1, the master regulator of stress response (ctsR)2 and two caseinolytic protease L members of the HSP100 chaperone family (clpL1, clpL2). Thereby, we highlighted that in vivo inhibition of the expression of some of these genes strongly affects the survival of O. oeni in stress conditions.

This study presents an elegant approach providing access to an in vivo study of gene function in O. oeni.

References:

1. Darsonval, M., Msadek, T., Alexandre, H. & Grandvalet, C. The Antisense RNA Approach: a New Application for In Vivo Investigation of the Stress Response of Oenococcus oeni, a Wine-Associated Lactic Acid Bacterium. Appl. Environ. Microbiol. 82, 18–26 (2016).

2. Darsonval, M., Julliat, F., Msadek, T., Alexandre, H. & Grandvalet, C. CtsR, the Master Regulator of Stress-Response in Oenococcus oeni, Is a Heat Sensor Interacting With ClpL1. Front Microbiol 9, (2018).

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Cosette Grandvalet, Frédérique Julliat, Maud Darsonval, Tarek Msadek, Hervé Alexandre

UMR A 02.102 Procédés Alimentaires et Microbiologiques, AgroSup Dijon – Université de Bourgogne Franche-Comté, Dijon, FRANCE.
Unité de Biologie des Bactéries Pathogènes àGram Positif, Institut Pasteur, Paris, FRANCE.
CNRS ERL 6002, Paris, FRANCE.

Contact the author

Keywords

Oenococcus oeni, lactic acid bacteria, antisense RNA , stress response 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effect of nitrogen content on fermentation kinetics and aroma profile of assyrtiko wine

Today, there is need to design, produce and label terroir wines, with unique organoleptic properties and more “attractive to consumers”. For this purpose, two Saccharomyces cerevisiae yeast strains (Sa and Sb) isolated during spontaneous fermentations were used for white wine production from the Assyrtiko grape of Santorini. A third commercial strain was used as control.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Sensory and chemical effects of postharvest grape cooling on wine quality

Wine cellars are affected by seasonally fluctuating workloads and face challenges especially in the harvest period connected to the required timely processing of the harvested grapes.

The effect of water stress deficit on ‘Xynisteri’ grapes through systems biology approaches

Cyprus is one of the very few phyloxera-free areas worldwide where the vast majority of vines are own-rooted and non-irrigated. ‘Xynisteri’ is a predominant indigenous cultivar, particularly amenable to extreme conditions such as drought and hot climate, thus rendering it appropriate for marginal soils and adverse climatic conditions. In the current work, a comparative study between irrigated (irrigation initiated at BBCH 71) and non-irrigated vines was conducted.