OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Abstract

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine. Although, wine exhibits harsh and challenging conditions (low pH, low temperature, nutrient-poor and presence of ethanol), O. oeni possesses a remarkable adaptability to those physiochemical conditions.

Mechanisms for responding to environmental changes are universally present in living beings and are essential for coping with the stress and for adapting to the new conditions. O. oeni tolerance to low pH and ethanol make its an interesting bacteria model for investigating stress response mechanism in lactic acid bacteria. However, lack of appropriate techniques to manipulate O. oeni genome has long delay molecular study of this fastidious bacterium. To get around the lack of genetic tool for gene replacement, we focused our work on gene inactivation by using antisense RNA approach to modulate gene expression. With the goal to understanding the function of O. oeni hsp genes in vivo, we produce antisense RNA targeting genes encoding: a small Hsp (hsp18)1, the master regulator of stress response (ctsR)2 and two caseinolytic protease L members of the HSP100 chaperone family (clpL1, clpL2). Thereby, we highlighted that in vivo inhibition of the expression of some of these genes strongly affects the survival of O. oeni in stress conditions.

This study presents an elegant approach providing access to an in vivo study of gene function in O. oeni.

References:

1. Darsonval, M., Msadek, T., Alexandre, H. & Grandvalet, C. The Antisense RNA Approach: a New Application for In Vivo Investigation of the Stress Response of Oenococcus oeni, a Wine-Associated Lactic Acid Bacterium. Appl. Environ. Microbiol. 82, 18–26 (2016).

2. Darsonval, M., Julliat, F., Msadek, T., Alexandre, H. & Grandvalet, C. CtsR, the Master Regulator of Stress-Response in Oenococcus oeni, Is a Heat Sensor Interacting With ClpL1. Front Microbiol 9, (2018).

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Cosette Grandvalet, Frédérique Julliat, Maud Darsonval, Tarek Msadek, Hervé Alexandre

UMR A 02.102 Procédés Alimentaires et Microbiologiques, AgroSup Dijon – Université de Bourgogne Franche-Comté, Dijon, FRANCE.
Unité de Biologie des Bactéries Pathogènes àGram Positif, Institut Pasteur, Paris, FRANCE.
CNRS ERL 6002, Paris, FRANCE.

Contact the author

Keywords

Oenococcus oeni, lactic acid bacteria, antisense RNA , stress response 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Study of the volatile aroma profile of five Italian grape varieties submitted to controlled postharvest withering

Wines made with grapes submitted to postharvest dehydration are often referred to as “passito” or “straw wines.” This distinct style of winemaking consists of a process of water loss that allows the berries to undergo a mild water stress and senescence process [1].

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen

Ugni blanc berry and wine composition impacted by thirteen rootstocks

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Berry shrivel causes – summarizing current hypotheses

Diverse ripening disorders affect grapevine resulting in high economic losses worldwide. The common obvious symptom is shriveling berries, however the shriveling pattern and the consequences for berry quality traits are distinct in each disorder. Among them, the disorder berry shrivel is characterized by a reduced sugar accumulation short after the onset of berry ripening leaving the clusters unsuitable for wine processing. Although our knowledge on BS increased recently, potential internal or external triggers contributing to the induction of BS are yet to be explored.