OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Abstract

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine. Although, wine exhibits harsh and challenging conditions (low pH, low temperature, nutrient-poor and presence of ethanol), O. oeni possesses a remarkable adaptability to those physiochemical conditions.

Mechanisms for responding to environmental changes are universally present in living beings and are essential for coping with the stress and for adapting to the new conditions. O. oeni tolerance to low pH and ethanol make its an interesting bacteria model for investigating stress response mechanism in lactic acid bacteria. However, lack of appropriate techniques to manipulate O. oeni genome has long delay molecular study of this fastidious bacterium. To get around the lack of genetic tool for gene replacement, we focused our work on gene inactivation by using antisense RNA approach to modulate gene expression. With the goal to understanding the function of O. oeni hsp genes in vivo, we produce antisense RNA targeting genes encoding: a small Hsp (hsp18)1, the master regulator of stress response (ctsR)2 and two caseinolytic protease L members of the HSP100 chaperone family (clpL1, clpL2). Thereby, we highlighted that in vivo inhibition of the expression of some of these genes strongly affects the survival of O. oeni in stress conditions.

This study presents an elegant approach providing access to an in vivo study of gene function in O. oeni.

References:

1. Darsonval, M., Msadek, T., Alexandre, H. & Grandvalet, C. The Antisense RNA Approach: a New Application for In Vivo Investigation of the Stress Response of Oenococcus oeni, a Wine-Associated Lactic Acid Bacterium. Appl. Environ. Microbiol. 82, 18–26 (2016).

2. Darsonval, M., Julliat, F., Msadek, T., Alexandre, H. & Grandvalet, C. CtsR, the Master Regulator of Stress-Response in Oenococcus oeni, Is a Heat Sensor Interacting With ClpL1. Front Microbiol 9, (2018).

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Cosette Grandvalet, Frédérique Julliat, Maud Darsonval, Tarek Msadek, Hervé Alexandre

UMR A 02.102 Procédés Alimentaires et Microbiologiques, AgroSup Dijon – Université de Bourgogne Franche-Comté, Dijon, FRANCE.
Unité de Biologie des Bactéries Pathogènes àGram Positif, Institut Pasteur, Paris, FRANCE.
CNRS ERL 6002, Paris, FRANCE.

Contact the author

Keywords

Oenococcus oeni, lactic acid bacteria, antisense RNA , stress response 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Soil quality in Beaujolais vineyard. Importance of pedology and cultural practices

A pedological study was carried out from 2009 to 2017 in Beaujolais vineyard, to improve physical and chemical knowledge of soils. It was completed in 2016 and 2017 by the current study, dealing with microbial aspects, in order to build a reference frame for improved advice in soil management. Microbial biomass was measured on representative plots of the six most common soil types identified in Beaujolais and, for each soil type, on plots with different levels of the main impacting parameters: total organic carbon, pH, cation exchange capacity, extractable copper. A total of 59 soil samples were collected. Confirming the results of various trials carried out in Beaujolais over the past 20 years, the results of the present study showed that the soils were still alive, but exhibited a large variability of biological parameters, which appeared dependant on both pedological and anthropic factors. Therefore, a good interpretation of biological parameters and advice for vine growers must rely on a pedologically-based referential with differentiated main driving factors. For example, the control of pH is of primary importance in granitic soils and in no way organic matter addition can improve soil quality if pH is too low. Conversely, in calcareous soils, biological parameters are more directly affected by direct or indirect (cover crops for example) inputs of organic matter. The use of biological parameters, such as microbial biomass, is of great potential value to improve advice on agro-viticultural practices (soil management, fertilization, liming, etc.), basis of a sustainable wine production on fragile soils.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Non-alcoholic wines: evaluation of chemical profile and biological properties

The market of non-alcoholic wine has notably increased in recent years, driven by growing health awareness and regulatory trends aimed at reducing alcohol consumption.

Impact of crop load management on terpene content in gewürztraminer grapes

Context and purpose of the study ‐ Crop load management by cluster thinning can improve ripening and the concentration of key metabolites for grape and wine quality. However, little work has been done on testing the impact of crop load management on terpene content of white grapes. The goal of the study was to assess if by reducing crop load via cluster thinning growers can increase terpene concentration of grapes, as well as to test if the timing of thinning application affects terpene concentration.

Cross analytical and sensory differentiation of monovarietal white wines from four autochthonous grape varieties: focus on macromolecules

White wines contain macromolecules such as proteins, phenolic compounds and polysaccharides. On a sensory
level, these compounds contribute to the ‘mouthfeel’ that differentiates the white wines worldwide [1].