OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Abstract

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine. Although, wine exhibits harsh and challenging conditions (low pH, low temperature, nutrient-poor and presence of ethanol), O. oeni possesses a remarkable adaptability to those physiochemical conditions.

Mechanisms for responding to environmental changes are universally present in living beings and are essential for coping with the stress and for adapting to the new conditions. O. oeni tolerance to low pH and ethanol make its an interesting bacteria model for investigating stress response mechanism in lactic acid bacteria. However, lack of appropriate techniques to manipulate O. oeni genome has long delay molecular study of this fastidious bacterium. To get around the lack of genetic tool for gene replacement, we focused our work on gene inactivation by using antisense RNA approach to modulate gene expression. With the goal to understanding the function of O. oeni hsp genes in vivo, we produce antisense RNA targeting genes encoding: a small Hsp (hsp18)1, the master regulator of stress response (ctsR)2 and two caseinolytic protease L members of the HSP100 chaperone family (clpL1, clpL2). Thereby, we highlighted that in vivo inhibition of the expression of some of these genes strongly affects the survival of O. oeni in stress conditions.

This study presents an elegant approach providing access to an in vivo study of gene function in O. oeni.

References:

1. Darsonval, M., Msadek, T., Alexandre, H. & Grandvalet, C. The Antisense RNA Approach: a New Application for In Vivo Investigation of the Stress Response of Oenococcus oeni, a Wine-Associated Lactic Acid Bacterium. Appl. Environ. Microbiol. 82, 18–26 (2016).

2. Darsonval, M., Julliat, F., Msadek, T., Alexandre, H. & Grandvalet, C. CtsR, the Master Regulator of Stress-Response in Oenococcus oeni, Is a Heat Sensor Interacting With ClpL1. Front Microbiol 9, (2018).

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Cosette Grandvalet, Frédérique Julliat, Maud Darsonval, Tarek Msadek, Hervé Alexandre

UMR A 02.102 Procédés Alimentaires et Microbiologiques, AgroSup Dijon – Université de Bourgogne Franche-Comté, Dijon, FRANCE.
Unité de Biologie des Bactéries Pathogènes àGram Positif, Institut Pasteur, Paris, FRANCE.
CNRS ERL 6002, Paris, FRANCE.

Contact the author

Keywords

Oenococcus oeni, lactic acid bacteria, antisense RNA , stress response 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Grapevine drought tolerant ideotypes to adapt viticulture to climate change

Climate change is challenging the resilience of grapevine, one of the most important crops worldwide. Adapting viticulture to a hotter and drier future will require a multifaceted approach that must include new management strategies, increased irrigation efficiency, and the identification of more drought tolerant genotypes.

Health benefits of winemaking by-products: in vitro study of the phenolic profile and potential healthy properties

The wine sector plays a significant role in the international agri-food industry, with the winemaking process leading to the generation of considerable amounts of by-products. Among these by-products, grape pomace, is one of the most abundant resources, mainly finding application in the production of distillates, fertilizers, and animal feed.