terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Abstract

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied. In total, 18 fungal isolates, belonging to 7 genera and 9 species, were selected based on their off-odor production profiles on malt medium among 685 isolates from our working collection. Growth rates were measured using solid synthetic must (MS) and real must (MR) and compared to those obtained in liquid must by laser nephelometry. Sensorial analysis and VOC profiles (GC-MS) were also determined for the same isolates, individually or in co-cultures with two FMA producing Botrytis isolates, after growth on must and grapes. Among the generated physiological data, optimal growth temperatures were 27-28°C, 26-30°C, 21-22°C for Botrytis spp., Penicillium crocicola and P. citreonigrum, respectively, depending on the isolate. Fastest growth rates were observed for B. cinerea and P. crocicola, while Cladosporium subtilissimum and P. brevicompactum isolates were slowest. For VOC profiles, P. crocicola, P. bialowiezense and Clonostachys rosea produced known FMA compounds (1-octen-3-one and 1-octen-3-ol) at higher levels when co-inoculated with Botrytis spp. on grapes. For must trials, a species effect on VOC profiles was clearly observed (92 VOC identified). To confirm these findings, further co-inoculation studies were performed on two grape varieties (Meunier and Pinot noir) and, so far, sensorial analyses showed similar trends. Overall, this study provides novel knowledge about changes in fungal growth kinetics and VOC profiles in musts and on grapes. These results provide new insights for the wine making to better understand how FMA off-flavors are generated by molds.

 

1. Scott et al, 2022 doi.org/10.1016/B978-0-08-102067-8.00006-3
2. Steel et al, 2013 doi.org/10.1021/jf400641r
3. Rousseaux et al 2014 doi:10.1016/j.fm.2013.08.013
4. La Guerche et al, 2006 doi.org/10.1016/B978-0-08-102067-8.00006-3
5. Meistermann et al, 2020 (DOI:10.20870/oeno-one.2021.55.3.3004)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Adrien Destanque1,2, Alexis Commereuc1, Flora Pensec1, Adeline Picot1, Anne Thierry3, Marie-Bernadette Maillard3, Louis Corol-ler, Sylvie Treguer-Fernandez1, Emmanuel Coton1, Marion Hervé2 and Monika Coton1*

1. Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
2. Centre de Recherche Robert-Jean de Vogüé Moët Hennessy, F-51530 Oiry, France
3. INRAE, Institut Agro, UMR STLO, F-35000 Rennes, France

Contact the author*

Keywords

Mycobiot, growth modeling, volatile organic compounds (VOCs)

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.