GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

Abstract

Context and purpose of the study – In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

Material and methods – Berry samples were collected at maturity from 41 different Vitis vinifera cultivars at replicate locations within the VitAdapt common-garden vineyard at the Institut des Sciences de la Vigne et du Vin (ISVV) in Bordeaux, France. Carbon isotope ratios were measured in berry juice sugars from these samples to determine the level of carbon isotope discrimination (δ13C) existing when the sugars were accumulated. The level of δ13C in berry juice sugar is considered an effective indicator of the level of stomatal closure during the sugar accumulation period. Then, using local meteorology and observed phenology, a water balance model was used to estimate the average soil water content during the berry ripening period for each cultivar in each year. Replicate measurements of δ13C in each cultivar for 2012 through 2016 were then compared against modeled average soil water content for the associated berry ripening period, with results characterized and classified by cultivar.

Results – As soil water content during the berry ripening period decreased, the corresponding δ13C measurements in berry juice sugars for all cultivars became less negative, indicating greater stomatal closure during this period. Using data from years 2012 through 2016 this trend was well demonstrated with a power function regression curve that gave similar shapes for all cultivars, although statistically significant differences in overall levels of δ13C were observed between many cultivars. Also, the difference in δ13C measurements between dry versus wet conditions for a given cultivar provides an indication of that cultivar’s stomatal closure sensitivity in response to increasing soil water deficits. These results support the use of δ13C measurements in berry juice sugars as a simple and effective way of assessing differences in stomatal behavior among cultivars in the field, perhaps across different rootstock, soil, and/or climate conditions. Next steps for continuing and improving the analysis are also presented

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Mark GOWDY1, Agnès DESTRAC-IRVINE1, Elisa MARGUERIT1, Philippe PIERI1, Gregory GAMBETTA1, Cornelis VAN LEEUWEN1*

1 EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33882 Villenave d-Ornon, France

Contact the author

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.

Vintage influence on Grenache N, Syrah N and Mourvedre N in Côtes du Rhône (France)

Vintage is part of « terroir ». The aim of this work is to study, through vine and berry parameters, the effect of vintage on the three major red grape varieties in Côtes du Rhône : Grenache N, Syrah N and Mourvedre N. We first characterized vintages 1997 to 2003, highlighting similar features in grape development across the different cultivars since 2001 only.

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

Use of a recombinant protein (Harpin αβ) as a tool to improve phenolic composition in wines

Climate change is modifying environmental conditions in all wine-growing areas of the
world.