GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

Abstract

Context and purpose of the study – In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

Material and methods – Berry samples were collected at maturity from 41 different Vitis vinifera cultivars at replicate locations within the VitAdapt common-garden vineyard at the Institut des Sciences de la Vigne et du Vin (ISVV) in Bordeaux, France. Carbon isotope ratios were measured in berry juice sugars from these samples to determine the level of carbon isotope discrimination (δ13C) existing when the sugars were accumulated. The level of δ13C in berry juice sugar is considered an effective indicator of the level of stomatal closure during the sugar accumulation period. Then, using local meteorology and observed phenology, a water balance model was used to estimate the average soil water content during the berry ripening period for each cultivar in each year. Replicate measurements of δ13C in each cultivar for 2012 through 2016 were then compared against modeled average soil water content for the associated berry ripening period, with results characterized and classified by cultivar.

Results – As soil water content during the berry ripening period decreased, the corresponding δ13C measurements in berry juice sugars for all cultivars became less negative, indicating greater stomatal closure during this period. Using data from years 2012 through 2016 this trend was well demonstrated with a power function regression curve that gave similar shapes for all cultivars, although statistically significant differences in overall levels of δ13C were observed between many cultivars. Also, the difference in δ13C measurements between dry versus wet conditions for a given cultivar provides an indication of that cultivar’s stomatal closure sensitivity in response to increasing soil water deficits. These results support the use of δ13C measurements in berry juice sugars as a simple and effective way of assessing differences in stomatal behavior among cultivars in the field, perhaps across different rootstock, soil, and/or climate conditions. Next steps for continuing and improving the analysis are also presented

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Mark GOWDY1, Agnès DESTRAC-IRVINE1, Elisa MARGUERIT1, Philippe PIERI1, Gregory GAMBETTA1, Cornelis VAN LEEUWEN1*

1 EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33882 Villenave d-Ornon, France

Contact the author

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.

Applications pratiques du zonage vitivinicole

Le zonage vitivinicole présente toute une série d’applications pratiques. Son importance est en train d’augmenter, soit en fonction des moyens techniques chaque fois plus performants, qui rendent possible le développement des zonages de plus en plus intégrées, consistants et utiles, soit en fonction d’un marché de plus en plus mondialisé. L’article situe la contribution du zonage au niveau de la production vitivinicole et du développement du territoire.

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

Wine consumption in Ukraine: trends, socio-economic aspects, and public perception

This article explores the contemporary culture of wine consumption in Ukraine through the lens of social, economic, and cultural transformations triggered by European integration, the COVID-19 pandemic, and the full-scale war since 2022.