GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

Abstract

Context and purpose of the study – In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

Material and methods – Berry samples were collected at maturity from 41 different Vitis vinifera cultivars at replicate locations within the VitAdapt common-garden vineyard at the Institut des Sciences de la Vigne et du Vin (ISVV) in Bordeaux, France. Carbon isotope ratios were measured in berry juice sugars from these samples to determine the level of carbon isotope discrimination (δ13C) existing when the sugars were accumulated. The level of δ13C in berry juice sugar is considered an effective indicator of the level of stomatal closure during the sugar accumulation period. Then, using local meteorology and observed phenology, a water balance model was used to estimate the average soil water content during the berry ripening period for each cultivar in each year. Replicate measurements of δ13C in each cultivar for 2012 through 2016 were then compared against modeled average soil water content for the associated berry ripening period, with results characterized and classified by cultivar.

Results – As soil water content during the berry ripening period decreased, the corresponding δ13C measurements in berry juice sugars for all cultivars became less negative, indicating greater stomatal closure during this period. Using data from years 2012 through 2016 this trend was well demonstrated with a power function regression curve that gave similar shapes for all cultivars, although statistically significant differences in overall levels of δ13C were observed between many cultivars. Also, the difference in δ13C measurements between dry versus wet conditions for a given cultivar provides an indication of that cultivar’s stomatal closure sensitivity in response to increasing soil water deficits. These results support the use of δ13C measurements in berry juice sugars as a simple and effective way of assessing differences in stomatal behavior among cultivars in the field, perhaps across different rootstock, soil, and/or climate conditions. Next steps for continuing and improving the analysis are also presented

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Mark GOWDY1, Agnès DESTRAC-IRVINE1, Elisa MARGUERIT1, Philippe PIERI1, Gregory GAMBETTA1, Cornelis VAN LEEUWEN1*

1 EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33882 Villenave d-Ornon, France

Contact the author

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.

Vitis vinifera Manseng noir is an alternative red variety for low alcohol wines of strong structure and soft tannins

In 2019, we have planted the red variety Manseng Noir, as it has been shown that it is the only sister of the Tannat grape. Tannat was introduced to Uruguay in 1870 from the south-western regions of France.

Increasing the capacity of change and adaptation of agri-food chain: the Agri-food CHIP project

The increasing vulnerability of food systems is a pressing challenge amplified by global interconnectedness.

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas.

Diffuse light due to wildfire smoke enhances gas exchange of shaded leaves

The risk of wildfires is increasing as the frequency and severity of drought and heat waves continue to rise. Wildfires are associated with the combustion of plant materials and emit smoke. In the atmosphere, smoke may spread readily across large areas. Smoke is composed of solid and liquid phase particulates and gases and has been identified as a causal agent of “smoke taint” in wine. On a smoky day, the intensity of direct light decreases because these particulates scatter sunlight. Even though this effect is frequently assumed to decrease plant photosynthesis, this assumption ignores the potential changes in diffuse light and may be based on scant evidence.