GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

Abstract

Context and purpose of the study – In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

Material and methods – Berry samples were collected at maturity from 41 different Vitis vinifera cultivars at replicate locations within the VitAdapt common-garden vineyard at the Institut des Sciences de la Vigne et du Vin (ISVV) in Bordeaux, France. Carbon isotope ratios were measured in berry juice sugars from these samples to determine the level of carbon isotope discrimination (δ13C) existing when the sugars were accumulated. The level of δ13C in berry juice sugar is considered an effective indicator of the level of stomatal closure during the sugar accumulation period. Then, using local meteorology and observed phenology, a water balance model was used to estimate the average soil water content during the berry ripening period for each cultivar in each year. Replicate measurements of δ13C in each cultivar for 2012 through 2016 were then compared against modeled average soil water content for the associated berry ripening period, with results characterized and classified by cultivar.

Results – As soil water content during the berry ripening period decreased, the corresponding δ13C measurements in berry juice sugars for all cultivars became less negative, indicating greater stomatal closure during this period. Using data from years 2012 through 2016 this trend was well demonstrated with a power function regression curve that gave similar shapes for all cultivars, although statistically significant differences in overall levels of δ13C were observed between many cultivars. Also, the difference in δ13C measurements between dry versus wet conditions for a given cultivar provides an indication of that cultivar’s stomatal closure sensitivity in response to increasing soil water deficits. These results support the use of δ13C measurements in berry juice sugars as a simple and effective way of assessing differences in stomatal behavior among cultivars in the field, perhaps across different rootstock, soil, and/or climate conditions. Next steps for continuing and improving the analysis are also presented

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Mark GOWDY1, Agnès DESTRAC-IRVINE1, Elisa MARGUERIT1, Philippe PIERI1, Gregory GAMBETTA1, Cornelis VAN LEEUWEN1*

1 EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33882 Villenave d-Ornon, France

Contact the author

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.