GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Handbook of the charter of the universal holistic metaethics  sustainability 4.1c” for certification and warranty bio-métaétique 4.1c

Handbook of the charter of the universal holistic metaethics  sustainability 4.1c” for certification and warranty bio-métaétique 4.1c

Abstract

Defined the new paradigm, the applied philosophy, the methodology, the algorithm of the “Charter for Universal Holistic MetaEthic Sustainability 4.1C17.18”, research has continued to define and write, an handbook that should be:”Complete Universal Holistic MetaEthics 4.1C of descriptors” of the “Charter for Sustainability Universal Holistic MetaEthic 4.1C17.18” with basic and applicative indexing.

In these activities and research we have involved over 3500 Italian and non-Italian people from the research world to simple but educated, enlightened and enlightening citizens and we have analyzed over 180000 entries concerning the descriptors above, which represent the basic “descriptors”.

This innovative revolutionary innovative ” Handbook of the Charter of the Universal Holistic Sustainability 4.1C17.18″:

1-is particularly important to contribute to have a single basic certification of local sustainability, national, international and this without creating problems to the existing one,

2-fundamental in the application of the original innovative revolutionary ” Direct Certification and Direct Warranty of Sustainability” as it puts the producer in condition, among other things:

2.1- to choose from the most universal and complete range of descriptors, which/which descriptors submit to the “Certification and Guarantee Bio-MetaEthics 4.1C”,

2.2-of “Communicate 4.1C” to the user of the service (buyer, consumer included) the state of the art of a truly original innovative revolutionary ” Direct Certification and Direct Warranty of Holistic Universal MetaEthics Sustainability 4.1C17.18 “,

2.3-to stimulate:

2.3.1-the identification and/or creation of specific qualified and qualifying original descriptors,
2.3.2-the addition to the handbook:

2.3.2.1-in general of descriptors to be certified and guaranteed 4.1C,
2.3.2.2-in particular of specific original descriptors qualified and qualifying for the activity, the company, the brand, the territory and beyond it.

DOI:

Publication date: September 20, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1*, Alain CARBONNEAU2, Stefano SCAGGIANTE3, Cristian BOLZONELLA3, Luigino BARISAN3, Marco LUCHETTA3, Claudio BONGHI3, Andrea DAL BIANCO3, Michela OSTAN3, Dario DE MARCO1, Francesco DONATI1, Gianni TEO1.3

Conegliano Campus 5.1C, Conegliano (Italy)
Montpellier SupAgro, IHEV, Montpellier (Francia)
University of Padua – Seat of Conegliano, Treviso (Italy)

Contact the author

Keywords

sustainability, handbook, certification 4.1C, bio – metaethic sustainability 4.1C

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine.

Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Port wine is a fortified wine exclusively produced in the Douro Appellation (Portugal) under very specific conditions resulting from natural and human factors. Its intrinsic aroma characteristics are modulated upon a network of factors, such as the terroir, varieties and winemaking procedures that include a wide set of steps, namely the fortification with grape spirit (ca. 77% v/v ethanol).

Il piano regolatore delle città’ del vino: aspetti urbanistici, economici e turistici

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.