GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Handbook of the charter of the universal holistic metaethics  sustainability 4.1c” for certification and warranty bio-métaétique 4.1c

Handbook of the charter of the universal holistic metaethics  sustainability 4.1c” for certification and warranty bio-métaétique 4.1c

Abstract

Defined the new paradigm, the applied philosophy, the methodology, the algorithm of the “Charter for Universal Holistic MetaEthic Sustainability 4.1C17.18”, research has continued to define and write, an handbook that should be:”Complete Universal Holistic MetaEthics 4.1C of descriptors” of the “Charter for Sustainability Universal Holistic MetaEthic 4.1C17.18” with basic and applicative indexing.

In these activities and research we have involved over 3500 Italian and non-Italian people from the research world to simple but educated, enlightened and enlightening citizens and we have analyzed over 180000 entries concerning the descriptors above, which represent the basic “descriptors”.

This innovative revolutionary innovative ” Handbook of the Charter of the Universal Holistic Sustainability 4.1C17.18″:

1-is particularly important to contribute to have a single basic certification of local sustainability, national, international and this without creating problems to the existing one,

2-fundamental in the application of the original innovative revolutionary ” Direct Certification and Direct Warranty of Sustainability” as it puts the producer in condition, among other things:

2.1- to choose from the most universal and complete range of descriptors, which/which descriptors submit to the “Certification and Guarantee Bio-MetaEthics 4.1C”,

2.2-of “Communicate 4.1C” to the user of the service (buyer, consumer included) the state of the art of a truly original innovative revolutionary ” Direct Certification and Direct Warranty of Holistic Universal MetaEthics Sustainability 4.1C17.18 “,

2.3-to stimulate:

2.3.1-the identification and/or creation of specific qualified and qualifying original descriptors,
2.3.2-the addition to the handbook:

2.3.2.1-in general of descriptors to be certified and guaranteed 4.1C,
2.3.2.2-in particular of specific original descriptors qualified and qualifying for the activity, the company, the brand, the territory and beyond it.

DOI:

Publication date: September 20, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1*, Alain CARBONNEAU2, Stefano SCAGGIANTE3, Cristian BOLZONELLA3, Luigino BARISAN3, Marco LUCHETTA3, Claudio BONGHI3, Andrea DAL BIANCO3, Michela OSTAN3, Dario DE MARCO1, Francesco DONATI1, Gianni TEO1.3

Conegliano Campus 5.1C, Conegliano (Italy)
Montpellier SupAgro, IHEV, Montpellier (Francia)
University of Padua – Seat of Conegliano, Treviso (Italy)

Contact the author

Keywords

sustainability, handbook, certification 4.1C, bio – metaethic sustainability 4.1C

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Description of the effect of the practical management in the characterization of « terroir effect »

The characterization of « the soil effect » in vine growing is often limited to the description of the physical components of the terroir. Many works were done in this direction and corresponded to geological, pedological or agronomical approaches. However, if the physical environment influences the vine and its grapes, its effect becomes limited at the scale of exploitation. Thus, it could be important to consider how the viticulturist « translated » the potential.

The role of climate/soil of different zones/terroirs on grape characteristics

According to the different concern of the ‘traditional’ and the ‘new’ wine-producing Countries, a variable importance is recognized to the climate/soil and to grapevine cultivars as factors affecting the wine quality. However, the viticultural experience can state that, within each area, climate and soil plays an incontestable role in affecting grape quality, and consequently wine quality, as well as the genetic characteristics of the cultivar.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Adsorption capacity of phenolics compounds by polyaniline materials in model solution

The aim of this work was to study the trapping capacity of four polyaniline polymers towards phenolic compounds in wine-like model solutions. METHODS: The model wine solution was composed of 12% (v/v) and 4 g/L of tartaric acid adjusted to pH = 3.6. A series of centrifuge tubes (15 mL) were filled with 10 mL of model solution enriched with 50 mg/L of five phenolic compounds (i.e., Gallic acid, caffeic acid, (+)-catechin, (-)-epicatechin, and rutin), and treated with different doses of PANI polymer (i.e., 0, 2, 4 and 8 g/L). After the addition of the polymer, the samples were stirred using a platform shaker at room temperature (20 ºC) for 2, 8, 16 and 24 h. All treatments included three replications.

1H-NMR-based Untargeted Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

Untargeted metabolomics has proven to be an effective method to study the impact of the terroir on metabolic profile of wines. In this context, the aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through 1H-NMR metabolomics combined with chemometrics.Grapes from Nero d’Avola L. red cultivar cultivated on four different soil types were separately vinified to obtain four different red wines.One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz