GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Under trellis cover crop induces grapevine tolerance to bunch rot

Under trellis cover crop induces grapevine tolerance to bunch rot

Abstract

Context and purpose of the study – Botrytis bunch rot occurrence is one of the most important limitations for the wine industry in humid environments. A positive correlation between grapevine growth and susceptibility to fungal pathogens has been found. In theory the effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). However, a reduction in bunch rot incidence can be achieved in some circumstances without major vine growth reduction. The present study was aimed to test the general hypothesis that bunch rot susceptibility is affected by vine vigor, but other factors associated with grapevine vegetative expression could be even more relevant.

Material and methods – The experiment was conducted over three growing seasons in Southern Uruguay. We tested Vertical Shoot Positioned (VSP) versus Lyra trellis systems with conventional flour management consisting alleyway tall fescue with 1.0 m wide weed-free strips under the trellis (VSP-H and Lyra-H), and VSP with under-trellis cover crop (VSP-UTCC). UTCC consists in the full cover of the vineyard soil with tall fescue (Festuca arundinacea). In all treatments, deficit drip irrigation was provided at mid-day stem potential (SWP) thresholds of -0.9 MPa. Treatments were arranged in a split-plot randomized block design with trellis system (Lyra vs VSP) as main plots and flour management schemes (H vs UTCC) as subplots. Shoot growth rate, SWP, berry size, berry composition (titratable acidity, Brix, and yeast available nitrogen) and bunch rot incidence and severity were monitored over the seasons, as well as final vine yield, cluster weights, berryfirmness and pruning weights.

Results – In VSP-H and Lyra-H treatments Botrytis bunch rot incidence progressively increased with pruning weight per meter of cordon length (PW/m). However, even associated with an increased number of shoots per vine, Lyra significantly reduce vine vigor, average disease occurrence was comparable between both trellis systems. Contrarily, bunch rot incidence was every season remarkably lower in VSP-UTCC compared to Herbicide treatments (Lyra-H and VSP-H) even when vegetative development (shoot elongation rate, PW/m, PAR%) and fruit maturation (TSS, titratable acidity) was compared to Lyra-H. Associated with berry weight, bunch size was significantly reduced by VSP-UTCC treatment.These may underline the important role of cluster architecture in the lower B. cinerea infection. However, the strong difference observed in disease occurrence between UTCC and H treatment in our study could not be explained by just this factor since UTCC also significantly affected other bunch rot infection triggers (reduced juice N levels and increased berry firmness). Botrytis bunch rot is a complex disease, and many of the three-way interactions (host, environment and pathogen) are poorly understood. Our results don’t allow to identify the specific mechanism by which UTCC induced a higher tolerance to botrytis bunch rot, however a clear effect on pathogen or host plant behavior was detected. Its seems to be more related to direct factors than indirect ones associated with canopy microclimate.

DOI:

Publication date: September 20, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Andrés CONIBERTI1*, Virginia FERRARI1, Edgardo DISEGNA1, Mario GARCIA PETILLO2, Alan N. LAKSO3

1 Programa Fruticultura, Instituto Nacional de Investigación Agropecuaria, Canelones Uruguay
2 Departamento de Suelos y Aguas, Facultad de Agronomia, UdelaR., Montevideo, Uruguay
3 Department of Horticulture, College of Agriculture and Life Science, Cornell University. Geneva, NY USA

Contact the author

Keywords

Tannat, Botrytis bunch rot, under trellis cover crop, Fescue, vine vigor

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.

Wine archeochemistry: a multiplatform analytical approach to chemically profile shipwreck wines

The Cape of Storms (also known as Cape of Good Hope) is renowned for harbouring a multitude of shipwrecks due to the inherent treacherous coastline and blistering storms.

Influence of harvest time and withering length combination on reinforced Nebbiolo wines: phenolic composition, colour traits, and sensory profile

Sforzato di Valtellina DOCG is a reinforced dry red wine produced in the mountain area of Valtellina alpine valley (North Italy), using ‘Nebbiolo’ grapes that undergo a withering process. This process impacts on the grape composition due to a sugar concentration and changes in secondary metabolism influencing volatile organic compounds (VOCs) and polyphenols.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

On-farm monitoring of grapevine water and nitrogen status in relation to different soil management practices in Valais, Switzerland

In response to increasing societal demands for environmentally-friendly viticulture, winegrowers are adapting their cultivation techniques, particularly by reducing the use of herbicides.