GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Under trellis cover crop induces grapevine tolerance to bunch rot

Under trellis cover crop induces grapevine tolerance to bunch rot

Abstract

Context and purpose of the study – Botrytis bunch rot occurrence is one of the most important limitations for the wine industry in humid environments. A positive correlation between grapevine growth and susceptibility to fungal pathogens has been found. In theory the effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). However, a reduction in bunch rot incidence can be achieved in some circumstances without major vine growth reduction. The present study was aimed to test the general hypothesis that bunch rot susceptibility is affected by vine vigor, but other factors associated with grapevine vegetative expression could be even more relevant.

Material and methods – The experiment was conducted over three growing seasons in Southern Uruguay. We tested Vertical Shoot Positioned (VSP) versus Lyra trellis systems with conventional flour management consisting alleyway tall fescue with 1.0 m wide weed-free strips under the trellis (VSP-H and Lyra-H), and VSP with under-trellis cover crop (VSP-UTCC). UTCC consists in the full cover of the vineyard soil with tall fescue (Festuca arundinacea). In all treatments, deficit drip irrigation was provided at mid-day stem potential (SWP) thresholds of -0.9 MPa. Treatments were arranged in a split-plot randomized block design with trellis system (Lyra vs VSP) as main plots and flour management schemes (H vs UTCC) as subplots. Shoot growth rate, SWP, berry size, berry composition (titratable acidity, Brix, and yeast available nitrogen) and bunch rot incidence and severity were monitored over the seasons, as well as final vine yield, cluster weights, berryfirmness and pruning weights.

Results – In VSP-H and Lyra-H treatments Botrytis bunch rot incidence progressively increased with pruning weight per meter of cordon length (PW/m). However, even associated with an increased number of shoots per vine, Lyra significantly reduce vine vigor, average disease occurrence was comparable between both trellis systems. Contrarily, bunch rot incidence was every season remarkably lower in VSP-UTCC compared to Herbicide treatments (Lyra-H and VSP-H) even when vegetative development (shoot elongation rate, PW/m, PAR%) and fruit maturation (TSS, titratable acidity) was compared to Lyra-H. Associated with berry weight, bunch size was significantly reduced by VSP-UTCC treatment.These may underline the important role of cluster architecture in the lower B. cinerea infection. However, the strong difference observed in disease occurrence between UTCC and H treatment in our study could not be explained by just this factor since UTCC also significantly affected other bunch rot infection triggers (reduced juice N levels and increased berry firmness). Botrytis bunch rot is a complex disease, and many of the three-way interactions (host, environment and pathogen) are poorly understood. Our results don’t allow to identify the specific mechanism by which UTCC induced a higher tolerance to botrytis bunch rot, however a clear effect on pathogen or host plant behavior was detected. Its seems to be more related to direct factors than indirect ones associated with canopy microclimate.

DOI:

Publication date: September 20, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Andrés CONIBERTI1*, Virginia FERRARI1, Edgardo DISEGNA1, Mario GARCIA PETILLO2, Alan N. LAKSO3

1 Programa Fruticultura, Instituto Nacional de Investigación Agropecuaria, Canelones Uruguay
2 Departamento de Suelos y Aguas, Facultad de Agronomia, UdelaR., Montevideo, Uruguay
3 Department of Horticulture, College of Agriculture and Life Science, Cornell University. Geneva, NY USA

Contact the author

Keywords

Tannat, Botrytis bunch rot, under trellis cover crop, Fescue, vine vigor

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

Comparison of tannin analysis by protein precipitation and normal-phase HPLC

Tannins are a heterogenous class of polymeric phenolics found in grapes, oak barrels and wine. In red wine tannins are primarily responsible for astringency, though they also have an important role in reacting with and stabilizing pigments. There are numerous sub-classes of tannins found in wine but they all share structural heterogeneity within each sub-class, with varied polymer composition, configuration and length.

Numerous methodologies exist for the quantification of tannins, however, protein precipitation using bovine serum albumin has proved itself useful due to its strong correlation to the sensory perception of astringency and the basic instruments required for the method. Though the method can yield valuable insights into tannin composition, it cannot be automated easily and necessitates well-trained personnel.

Recent advancements in understanding the terroir effect on aromas in grapes and wines

Terroir is about the link between wine and its origin. It has long been understood by sensory evaluation that the taste of wine from a given variety can be related to its origins. Specific organoleptic characteristics of wine are influenced by environmental factors such as soil and climate. By deconstructing the effect of measurable soil and climate parameters on grape and wine aroma compounds,

The characteristics of strong territorial brands: the case of Champagne

While most brands belong to individual enterprises, some brands belong to groups of enterprises based in a single territory. This conceptual paper examines the characteristics

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.