GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Under trellis cover crop induces grapevine tolerance to bunch rot

Under trellis cover crop induces grapevine tolerance to bunch rot

Abstract

Context and purpose of the study – Botrytis bunch rot occurrence is one of the most important limitations for the wine industry in humid environments. A positive correlation between grapevine growth and susceptibility to fungal pathogens has been found. In theory the effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). However, a reduction in bunch rot incidence can be achieved in some circumstances without major vine growth reduction. The present study was aimed to test the general hypothesis that bunch rot susceptibility is affected by vine vigor, but other factors associated with grapevine vegetative expression could be even more relevant.

Material and methods – The experiment was conducted over three growing seasons in Southern Uruguay. We tested Vertical Shoot Positioned (VSP) versus Lyra trellis systems with conventional flour management consisting alleyway tall fescue with 1.0 m wide weed-free strips under the trellis (VSP-H and Lyra-H), and VSP with under-trellis cover crop (VSP-UTCC). UTCC consists in the full cover of the vineyard soil with tall fescue (Festuca arundinacea). In all treatments, deficit drip irrigation was provided at mid-day stem potential (SWP) thresholds of -0.9 MPa. Treatments were arranged in a split-plot randomized block design with trellis system (Lyra vs VSP) as main plots and flour management schemes (H vs UTCC) as subplots. Shoot growth rate, SWP, berry size, berry composition (titratable acidity, Brix, and yeast available nitrogen) and bunch rot incidence and severity were monitored over the seasons, as well as final vine yield, cluster weights, berryfirmness and pruning weights.

Results – In VSP-H and Lyra-H treatments Botrytis bunch rot incidence progressively increased with pruning weight per meter of cordon length (PW/m). However, even associated with an increased number of shoots per vine, Lyra significantly reduce vine vigor, average disease occurrence was comparable between both trellis systems. Contrarily, bunch rot incidence was every season remarkably lower in VSP-UTCC compared to Herbicide treatments (Lyra-H and VSP-H) even when vegetative development (shoot elongation rate, PW/m, PAR%) and fruit maturation (TSS, titratable acidity) was compared to Lyra-H. Associated with berry weight, bunch size was significantly reduced by VSP-UTCC treatment.These may underline the important role of cluster architecture in the lower B. cinerea infection. However, the strong difference observed in disease occurrence between UTCC and H treatment in our study could not be explained by just this factor since UTCC also significantly affected other bunch rot infection triggers (reduced juice N levels and increased berry firmness). Botrytis bunch rot is a complex disease, and many of the three-way interactions (host, environment and pathogen) are poorly understood. Our results don’t allow to identify the specific mechanism by which UTCC induced a higher tolerance to botrytis bunch rot, however a clear effect on pathogen or host plant behavior was detected. Its seems to be more related to direct factors than indirect ones associated with canopy microclimate.

DOI:

Publication date: September 20, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Andrés CONIBERTI1*, Virginia FERRARI1, Edgardo DISEGNA1, Mario GARCIA PETILLO2, Alan N. LAKSO3

1 Programa Fruticultura, Instituto Nacional de Investigación Agropecuaria, Canelones Uruguay
2 Departamento de Suelos y Aguas, Facultad de Agronomia, UdelaR., Montevideo, Uruguay
3 Department of Horticulture, College of Agriculture and Life Science, Cornell University. Geneva, NY USA

Contact the author

Keywords

Tannat, Botrytis bunch rot, under trellis cover crop, Fescue, vine vigor

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Heat waves and drought stress impact grapevine growth and physiology

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

MicrobiomeSupport: Towards coordinated microbiome R&I activities in the food system to support (EU and) international bioeconomy goals

Microbiomes have crucial roles in maintaining life on Earth, and their functions drive human, animal, plant and environmental health. The microbiome research landscape is developing rapidly and is performed in many different science fields using similar concepts but mostly one (eco)system at-a-time. Thus, we are only starting to unravel and understand the interconnectedness of microbiomes across the (eco)systems.

How to improve the success of dead vine replacement: insights into the impacts of young plant‘s environment 

Grapevine faces multiple biotic and/or abiotic stresses, which are interrelated. Depending on their incidence, they can have a negative impact on the development and production of the plant, but also on its longevity, leading to vine dieback. One of the consequences of vine dieback on production is the increased replacement rate of dead or missing vines within a parcel.

Discrimination of South Tyrol’s wines by their cultivation practices: A detailed mass spectrometric approach

Climate change is having a profound effect on viticulture by altering the conditions under which vines grow, leading to increased water stress and earlier harvests, which in turn affect the quality and character of wines [1].

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.