GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Under trellis cover crop induces grapevine tolerance to bunch rot

Under trellis cover crop induces grapevine tolerance to bunch rot

Abstract

Context and purpose of the study – Botrytis bunch rot occurrence is one of the most important limitations for the wine industry in humid environments. A positive correlation between grapevine growth and susceptibility to fungal pathogens has been found. In theory the effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). However, a reduction in bunch rot incidence can be achieved in some circumstances without major vine growth reduction. The present study was aimed to test the general hypothesis that bunch rot susceptibility is affected by vine vigor, but other factors associated with grapevine vegetative expression could be even more relevant.

Material and methods – The experiment was conducted over three growing seasons in Southern Uruguay. We tested Vertical Shoot Positioned (VSP) versus Lyra trellis systems with conventional flour management consisting alleyway tall fescue with 1.0 m wide weed-free strips under the trellis (VSP-H and Lyra-H), and VSP with under-trellis cover crop (VSP-UTCC). UTCC consists in the full cover of the vineyard soil with tall fescue (Festuca arundinacea). In all treatments, deficit drip irrigation was provided at mid-day stem potential (SWP) thresholds of -0.9 MPa. Treatments were arranged in a split-plot randomized block design with trellis system (Lyra vs VSP) as main plots and flour management schemes (H vs UTCC) as subplots. Shoot growth rate, SWP, berry size, berry composition (titratable acidity, Brix, and yeast available nitrogen) and bunch rot incidence and severity were monitored over the seasons, as well as final vine yield, cluster weights, berryfirmness and pruning weights.

Results – In VSP-H and Lyra-H treatments Botrytis bunch rot incidence progressively increased with pruning weight per meter of cordon length (PW/m). However, even associated with an increased number of shoots per vine, Lyra significantly reduce vine vigor, average disease occurrence was comparable between both trellis systems. Contrarily, bunch rot incidence was every season remarkably lower in VSP-UTCC compared to Herbicide treatments (Lyra-H and VSP-H) even when vegetative development (shoot elongation rate, PW/m, PAR%) and fruit maturation (TSS, titratable acidity) was compared to Lyra-H. Associated with berry weight, bunch size was significantly reduced by VSP-UTCC treatment.These may underline the important role of cluster architecture in the lower B. cinerea infection. However, the strong difference observed in disease occurrence between UTCC and H treatment in our study could not be explained by just this factor since UTCC also significantly affected other bunch rot infection triggers (reduced juice N levels and increased berry firmness). Botrytis bunch rot is a complex disease, and many of the three-way interactions (host, environment and pathogen) are poorly understood. Our results don’t allow to identify the specific mechanism by which UTCC induced a higher tolerance to botrytis bunch rot, however a clear effect on pathogen or host plant behavior was detected. Its seems to be more related to direct factors than indirect ones associated with canopy microclimate.

DOI:

Publication date: September 20, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Andrés CONIBERTI1*, Virginia FERRARI1, Edgardo DISEGNA1, Mario GARCIA PETILLO2, Alan N. LAKSO3

1 Programa Fruticultura, Instituto Nacional de Investigación Agropecuaria, Canelones Uruguay
2 Departamento de Suelos y Aguas, Facultad de Agronomia, UdelaR., Montevideo, Uruguay
3 Department of Horticulture, College of Agriculture and Life Science, Cornell University. Geneva, NY USA

Contact the author

Keywords

Tannat, Botrytis bunch rot, under trellis cover crop, Fescue, vine vigor

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Replay of the Wine Vision 2040 event

A webinar organised by the UBC Wine Research Centre, on June 25th 2020. About Wine Vision 2040 Wine Vision 2040 is delivered by wine-passionate, high-profile individuals keen to share ideas and views that will spark conversations within wine communities.  No...

Response of grapevine cv. “Tinta Roriz” (vitis vinifera L.) to moderate irrigation in the Douro region, Portugal

The behaviour of cv. “Tinta Roriz” (Vitis vinifera L.), was studied when moderate drip irrigation was applied from veraison to harvest. Field studies were conducted during three growing seasons

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

Evaluation of the enological potential of red grapes in southern Brazil

The Campanha Gaúcha is located in the pampa biome and has unique characteristics, as it is the hottest producing region with the lowest volume of rain in Southern Brazil. Furthermore, the large extensions of flat or low-sloping areas, harsh winters and great sunshine during the ripening period, made this the second largest producer of fine wines in Brazil.