GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Under trellis cover crop induces grapevine tolerance to bunch rot

Under trellis cover crop induces grapevine tolerance to bunch rot

Abstract

Context and purpose of the study – Botrytis bunch rot occurrence is one of the most important limitations for the wine industry in humid environments. A positive correlation between grapevine growth and susceptibility to fungal pathogens has been found. In theory the effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). However, a reduction in bunch rot incidence can be achieved in some circumstances without major vine growth reduction. The present study was aimed to test the general hypothesis that bunch rot susceptibility is affected by vine vigor, but other factors associated with grapevine vegetative expression could be even more relevant.

Material and methods – The experiment was conducted over three growing seasons in Southern Uruguay. We tested Vertical Shoot Positioned (VSP) versus Lyra trellis systems with conventional flour management consisting alleyway tall fescue with 1.0 m wide weed-free strips under the trellis (VSP-H and Lyra-H), and VSP with under-trellis cover crop (VSP-UTCC). UTCC consists in the full cover of the vineyard soil with tall fescue (Festuca arundinacea). In all treatments, deficit drip irrigation was provided at mid-day stem potential (SWP) thresholds of -0.9 MPa. Treatments were arranged in a split-plot randomized block design with trellis system (Lyra vs VSP) as main plots and flour management schemes (H vs UTCC) as subplots. Shoot growth rate, SWP, berry size, berry composition (titratable acidity, Brix, and yeast available nitrogen) and bunch rot incidence and severity were monitored over the seasons, as well as final vine yield, cluster weights, berryfirmness and pruning weights.

Results – In VSP-H and Lyra-H treatments Botrytis bunch rot incidence progressively increased with pruning weight per meter of cordon length (PW/m). However, even associated with an increased number of shoots per vine, Lyra significantly reduce vine vigor, average disease occurrence was comparable between both trellis systems. Contrarily, bunch rot incidence was every season remarkably lower in VSP-UTCC compared to Herbicide treatments (Lyra-H and VSP-H) even when vegetative development (shoot elongation rate, PW/m, PAR%) and fruit maturation (TSS, titratable acidity) was compared to Lyra-H. Associated with berry weight, bunch size was significantly reduced by VSP-UTCC treatment.These may underline the important role of cluster architecture in the lower B. cinerea infection. However, the strong difference observed in disease occurrence between UTCC and H treatment in our study could not be explained by just this factor since UTCC also significantly affected other bunch rot infection triggers (reduced juice N levels and increased berry firmness). Botrytis bunch rot is a complex disease, and many of the three-way interactions (host, environment and pathogen) are poorly understood. Our results don’t allow to identify the specific mechanism by which UTCC induced a higher tolerance to botrytis bunch rot, however a clear effect on pathogen or host plant behavior was detected. Its seems to be more related to direct factors than indirect ones associated with canopy microclimate.

DOI:

Publication date: September 20, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Andrés CONIBERTI1*, Virginia FERRARI1, Edgardo DISEGNA1, Mario GARCIA PETILLO2, Alan N. LAKSO3

1 Programa Fruticultura, Instituto Nacional de Investigación Agropecuaria, Canelones Uruguay
2 Departamento de Suelos y Aguas, Facultad de Agronomia, UdelaR., Montevideo, Uruguay
3 Department of Horticulture, College of Agriculture and Life Science, Cornell University. Geneva, NY USA

Contact the author

Keywords

Tannat, Botrytis bunch rot, under trellis cover crop, Fescue, vine vigor

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Vineyard mulching offer many benefits beyond winter protection

Grapevines are susceptible to freezing damage at temperatures below -5°F during the winter season. Preventing winter injury to grapevines is a major challenge in many grape-producing regions. Conventional methods such as hilling-up soil over graft unions have been developed as winter protection methods for preventing vine loss. However, these practices have drawbacks such as soil erosion, vine damage and crown gall development.

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.

The grapevine single-berry clock, practical tools and outcomes 

The dynamic sequence of physiological events along the three-months of berry development from anthesis to ripe stage has been thoroughly investigated. Most studies were performed on average samples, taking care to crush enough fruits to fairly represent the overall trend of the future harvest. However, phenological stages like 30% caps off (EL25) highlights the asynchronous nature of this population. Consequently, softening, onset of sugar accumulation and coloration were melted by asynchrony in a developmental mumbo jumbo, until their respective timing could be clarified by single berries approaches.