GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Residual copper quantification on grapevine’s organs

Residual copper quantification on grapevine’s organs

Abstract

Context and purpose of the study – Copper is listed among the active substances candidates for substitution (Regulation EU 2015/408). Yet still, because of the lack of valid alternatives, the European Commission recently confirmed its usage authorization by limiting the maximum amount to 28 Kg per hectare in 7 years, i.e. an average of 4 kg/year (Reg. EU 2018/1981).This restriction is due to copper accumulation in soils and surface waters both caused by a steady application, especially on perennial crops (Riepert et al., 2013). The aim of this work is to determine if treatments with reduced copper dosages are able to reach different grapevine’s organs, with particular focus on the core of bunches, and if these small amounts can ensure the respect of the legislative prescription, without compromising the phytosanitary conditions of the vineyards, thus grape yields.

Material and methods – Samples from Incrocio Manzoni and Pinot noir varieties, grown in two different farms and training systems, were collected in four repetitions twice a month, between fruit set and veraison. Each leaf sample was prepared by obtaining 90 foliar discs of 2.7 cm diameter. Berries were divided according to their positions on the bunch and referring to the sprayer flow: internal, directly and indirectly exposed. Rachis were classified in first, second and third degree, i.e. main axis, first and last brunch respectively. Samples were washed with a 1% nitric acid solution and analyzed for copper quantification with an optical ICP. Leaves surface was obtained by applying a geometrical formula, while rachis and berries were measured after washing by scanning their images with the software ImageJ. Thus, approximating rachis to cilinders and berries to prolate spheroids, geometrical parameters were determined in order to calculate their 3D surface. Variance analysis (ANOVA) and Tukey’s test were performed (p<0,05, software “Dell™ Statistica™ 13.0”).

Results – The most copper content per surface unit was observed on the leaves: double amount (between 23 and 47 mg/m2) if compared to rachis (between 9 and 22 mg/m2) and triple as much when referring to internal and indirectly exposed berries (between 2 and 10 mg/m2). Values on rachis were higher on the terminal portions (2nd and 3rd degree) suggesting an elution phenomenon of the berries superficial copper and its further penetration inwards the cluster. Considering berries, the directly exposed ones carried the most amount of copper, while internal and indirectly exposed berries showed similar accumulation dynamics, pointing out the same difficulty in terms of spray distribution. Moreover, in one farm values only reached the efficacy range against Plasmopora viticola (5-10 mg/m2)(CABÚS et al., 2017) around veraison, when stomata are already closed. This could be explained through the lower total Cu amount sprayed on Incrocio Manzoni (3,4 kg) in relation to Pinot noir (5,5 kg) over the season. This study ascertains a copper accumulation over the season despite the run off caused by rainfalls and shows that treatments actually reach the most sensitive parts of the grapevine. Nevertheless, in farms using a strategy with reduced Cu dosages, some lacks in crop’s coverage could occur.According to the new legislative directives (Reg. EU 2018/1981), the limit of 28 kg/hectare in 7 years means an average of 4 kg/hectare/year, which could lead to limit situations as seen in this work. The intervention timing and a proper canopy management increase thus their importance as preparatory techniques for Cu efficacy.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Silvia GUGOLE, Roberto ZANZOTTI, Daniela BERTOLDI, Enzo MESCALCHIN

Fondazione Edmund Mach, 1 Via Edmund Mach, 38010 San Michele all’Adige, Trento, Italia

Contact the author

Keywords

grapevine, organic viticulture, copper, treatments, berries, rachis, leaves

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Identification of key-odorants in Sauternes Wines

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD).

Terroir valorization strategies in a reformed denomination area: the Prosecco case study

Aims: This work summarizes some of the upmost recent studies and valorization strategies concerning the Prosecco wine production area. After the geographical denomination Prosecco (DO) was strongly reformed in 2009, the newborn DOCG (controlled and guaranteed DO) and DOC (controlled DO) areas have required different and specific strategies to promote and protect the value of their production.

Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Aims: The aim of the study was to investigate whether organic or biodynamic management have a long-term impact on 1) the microbial biomass and enzymatic activity in the soil, 2) the soil microbial community, 3) flying as well as soil living arthropods and associated fungi. 

To what extent does vine balance actually drive fruit composition?

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.