GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Budburst delay and berry ripening after vegetal oil application in Austria

Budburst delay and berry ripening after vegetal oil application in Austria

Abstract

Context and purpose of the study – Occurrence of freezing temperatures in early spring when grapevine shoots are developing is termed late frost in viticulture. Young green tissues are very sensible to temperatures below zero and damages often lead to important yield and quality losses such as the case in Europe in 2017. An indirect method to avoid late frost damage in vineyards consist in delaying the budburst. Previous research reported similar effects by applying vegetal oil on dormant buds. Here, we tested the application of rapeseed vegetal oil during late winter to delay the budburst on two V.vinifera cultivars of interest in Austria, Grüner Veltliner (GV) and Zweigelt (ZW).

Material and methods – The experiment was carried out in 2017 and 2018 in an experimental vineyard located in Krems (N-E Austria), on 4 consecutive rows of ZW planted in 2004 and 4 consecutive rows of GV planted in 2007 and pruned as single Guyot. Experimental design consisted on 8 blocks of 12 vines each (4 controls and 4 oil-treated) per cultivar. Rapeseed oil (10% v/v in water) was manually sprayed on dormant buds in March (ca. 30-45 days before budbreak). The budbreak phenology and shoot development was assessed at the beginning of the growing season and berry samples were collected 5 times during ripening to determine possible impact of the treatment. At harvest, yield and leaf area was determined.

Results – The oil application resulted in a delayed budbreak for both cultivars and in both seasons. While in the first season oil-treatment did not impact yield or berry composition in both cultivars, during the second season phytotoxicity (bud necrosis or reduced shoot growth) was observed mainly in Zweigelt, leading to reduced yields and the alteration of some berry compositional parameters. G. Veltliner showed a lower degree of phytotoxicity (mainly reduced shoot vigor) that eventually disappeared during the season, resulting in no statistical differences in berry composition or yields compared with the non-treated controls. Overall, our results suggest an interaction between genotype, climatic factors (mainly temperature) and oil application, resulting in variable effects observed after oil application that needs to be fully characterized to avoid possible phytotoxic effects and fine tuning the technique.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Jose Carlos HERRERA1*, Robin KNÖBL1, Gregor WIEDESCHITZ1, Christa FEHRINGER1, Christoph GABLER2, Erhard KÜHRER2, Astrid FORNECK1

1 BOKU University, Institute of Viticulture and Pomology, Konrad-Lorenz Str. 24, A-3430 Tulln
2 Wein- und Obstbauschule Krems, Wienerstraße 101, A-3500 Krems

Contact the author

Keywords

budbreak, spring frost, freeze damage, ripening

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).

Assessing the benefits of irrigation access: the case of Southern France vineyards

Agriculture worldwide is threatened by climate change. In particular, declining water resource availability combined with increasing water demand is a key challenge in many rainfed areas, where irrigation appears to be a straightforward adaptation option. In this context, assessing the impacts of irrigation adoption on farm yields and incomes is a necessary step to reflect on the impact of both ex-post and ex-ante policies.

Evolución de los compuestos fenólicos durante el envero y la maduración en la DO Tarragona

La evolución de los contenidos en las pieles de compuestos fenólicos (fenólicos totales, antocianos totales, antocianos individuales por HPLC, catequinas y proantocianidoles) a lo largo

Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Aim: To investigate the possibility of utilising simultaneous measurements of absorbance-transmittance and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics, as a robust method that gives rapid results for classification of wines from different regions of South Australia according to their Geographical Indication (GI), and to gain insight into the effect of terroir on inter regional variation.

Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. In this context, this yeast species uses alcoholic fermentation to convert sugars from the grape must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum theoretical yield of conversion. Moreover, S. cerevisiae is also known for its great genetic diversity and plasticity that is directly related to its living environment, natural or technological and therefore to domestication. This leads to a great phenotypic diversity of metabolites production.