OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Optimizing the use of bentonite for better control of haze formation In white and rosé wines

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

Abstract

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins. The proteins undergo slow conformational changes, leading to aggregation and flocculation phenomena. The process can be accelerated by exposure of wine to high temperatures during transportation or storage. In recent years heat-unstable proteins in white wine were identified as grape class IV chitinases, β-glucanases and a fraction of thaumatin-like proteins. Although proteins play a central role in the formation of turbidity, other components present in wine such as polyphenols, sulfate anion, polysaccharides as well as ionic strength and pH value play an important role in these phenomenon.

 The lack of reliable tests assessing the risk of protein clouding during bottle storage is a recurring problem of winemakers. Currently used test assessing haze potential involves heating which often causes overdosing of fining agent. Despite the large progress in the white wine research and substantial development of the analytical methods applied the phenomenon of white wine haze formation remains unrevealed. The traditional treatment used to stabilize wine includes the addition of bentonite, which is certainly effective but due to its non-specific binding results in a considerable decrease in aroma compounds and therefore the quality of the wine. Thus, a strong need to establish a more selective and economically justified method of wine stabilization, which will preserve the aroma compounds in white and rosé wine, is undeniable.

 

This study aimed at the development of more reliable haze potential tests and more specific treatments for wine. To achieve this objective the knowledge the protein binding properties of different types of commercial bentonite have been analyzed, including the following: elemental analysis, surface charge density, swell index, external and internal specific surface area. The effect of quality of water used for hydration and wine pH on the swelling properties of bentonite have been also investigated. The proteins and polyphenols bound by different types of bentonite as well as the quality of the obtained wine (aroma compounds) have been identified using the above-mentioned methods and compared during three harvest periods. Finally, we have established the possibility of using bentonite alternatively on must with the development of a specific test to establish the dose of treatment.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Benoit Bach, Anne-Claire Silvestri, Jean-Christophe Perret, Marilyn Cléroux, Marie Blackford, Agnieszka Kosinska Cagnazzo, Marc Mathieu, Wilfried Andlauer

Changins, viticulture and enology, University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon, Switzerland
Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais, Route du Rawyl 64, 1950 Sion, Switzerland

Contact the author

Keywords

wine, protein, haze, bentonite

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Exploring the effect of oxygen exposure during malolactic fermentation on red wine color

this research investigates the impact of early oxygen exposure, also during malolactic fermentation (MLF), on pigments and color of a red wine from Sangiovese grapes

HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

Anthocyanins and tannins contribute to important sensorial traits of red wines, such as color and mouthfeel attributes.

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

Effect of vineyard management strategy on the nutritional status of irrigated « Tempranillo » vineyards grown in semi-arid areas

The combination of cover crops with regulated deficit irrigation has been lately shown to be a good method to improve harvest quality in irrigated vineyards of Southern Europe with semiarid climate, as an alternative to the conventional management, that consists on mechanical tillage and irrigation from fruitset to veraison and from then on reduced, or even ended.