OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Optimizing the use of bentonite for better control of haze formation In white and rosé wines

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

Abstract

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins. The proteins undergo slow conformational changes, leading to aggregation and flocculation phenomena. The process can be accelerated by exposure of wine to high temperatures during transportation or storage. In recent years heat-unstable proteins in white wine were identified as grape class IV chitinases, β-glucanases and a fraction of thaumatin-like proteins. Although proteins play a central role in the formation of turbidity, other components present in wine such as polyphenols, sulfate anion, polysaccharides as well as ionic strength and pH value play an important role in these phenomenon.

 The lack of reliable tests assessing the risk of protein clouding during bottle storage is a recurring problem of winemakers. Currently used test assessing haze potential involves heating which often causes overdosing of fining agent. Despite the large progress in the white wine research and substantial development of the analytical methods applied the phenomenon of white wine haze formation remains unrevealed. The traditional treatment used to stabilize wine includes the addition of bentonite, which is certainly effective but due to its non-specific binding results in a considerable decrease in aroma compounds and therefore the quality of the wine. Thus, a strong need to establish a more selective and economically justified method of wine stabilization, which will preserve the aroma compounds in white and rosé wine, is undeniable.

 

This study aimed at the development of more reliable haze potential tests and more specific treatments for wine. To achieve this objective the knowledge the protein binding properties of different types of commercial bentonite have been analyzed, including the following: elemental analysis, surface charge density, swell index, external and internal specific surface area. The effect of quality of water used for hydration and wine pH on the swelling properties of bentonite have been also investigated. The proteins and polyphenols bound by different types of bentonite as well as the quality of the obtained wine (aroma compounds) have been identified using the above-mentioned methods and compared during three harvest periods. Finally, we have established the possibility of using bentonite alternatively on must with the development of a specific test to establish the dose of treatment.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Benoit Bach, Anne-Claire Silvestri, Jean-Christophe Perret, Marilyn Cléroux, Marie Blackford, Agnieszka Kosinska Cagnazzo, Marc Mathieu, Wilfried Andlauer

Changins, viticulture and enology, University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon, Switzerland
Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais, Route du Rawyl 64, 1950 Sion, Switzerland

Contact the author

Keywords

wine, protein, haze, bentonite

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Multi-mineral wine profiling and Artificial Intelligence: Implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry

Multi-mineral wine profiling and artificial intelligence: implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry. Although their quantity is minimal, minerals are essential elements in the composition of every wine. Their presence is the result of complex interactions between factors such as soil, vines, climate, topography, and viticultural practices, all influenced by the terroir. Each stage of the winemaking process also contributes to shaping the unique mineral and taste profile of each wine, giving each cuvée its distinctive characteristics.

Variety specific thresholds for plant-based indicators of vine nitrogen status

Aim: Several plant-based indicators of vine N status are reported in the literature. Among these, yeast assimilable nitrogen in grape must (YAN) and total N concentration of petiole and leaf blades are considered to be reliable indicators and so is the chlorophyll index, measured with a device called N-tester. The N-tester index is used to measure the intensity of the green colour of the leaf blade, and therefore to estimate its chlorophyll content.

Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Climate has a predominant role on growth and development of grapevines. Therefore, climate change represents an important challenge to the winemaking sector.

Novel insights into Passito wines aroma typicality. Rationalizing the markers of varietal and geographical origin of Amarone DOCG

Valpolicella is a famous Italian wine-producing region (Paronetto & Dellaglio, 2011), whose main characteristic is the extensive use of the post-harvest withering technique, which takes place in naturally ventilated rooms called ‘fruttai’ (Bellincontro et al., 2016).

Characterization of “territoires” throughout the production of wines obtained with withered grapes: the cases of “Terra della Valpolicella” (Verona) and “Terra della Valle del Piave” (Treviso) in Northern Italy

Dans la définition et la description d’un “territoire” (“terra” en italien), avec les facteurs du milieu et génétiques, un rôle important est joué par ceux agronomiques, techniques et de culture qui contribuent à caractériser le produit d’une zone spécifique.