OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Optimizing the use of bentonite for better control of haze formation In white and rosé wines

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

Abstract

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins. The proteins undergo slow conformational changes, leading to aggregation and flocculation phenomena. The process can be accelerated by exposure of wine to high temperatures during transportation or storage. In recent years heat-unstable proteins in white wine were identified as grape class IV chitinases, β-glucanases and a fraction of thaumatin-like proteins. Although proteins play a central role in the formation of turbidity, other components present in wine such as polyphenols, sulfate anion, polysaccharides as well as ionic strength and pH value play an important role in these phenomenon.

 The lack of reliable tests assessing the risk of protein clouding during bottle storage is a recurring problem of winemakers. Currently used test assessing haze potential involves heating which often causes overdosing of fining agent. Despite the large progress in the white wine research and substantial development of the analytical methods applied the phenomenon of white wine haze formation remains unrevealed. The traditional treatment used to stabilize wine includes the addition of bentonite, which is certainly effective but due to its non-specific binding results in a considerable decrease in aroma compounds and therefore the quality of the wine. Thus, a strong need to establish a more selective and economically justified method of wine stabilization, which will preserve the aroma compounds in white and rosé wine, is undeniable.

 

This study aimed at the development of more reliable haze potential tests and more specific treatments for wine. To achieve this objective the knowledge the protein binding properties of different types of commercial bentonite have been analyzed, including the following: elemental analysis, surface charge density, swell index, external and internal specific surface area. The effect of quality of water used for hydration and wine pH on the swelling properties of bentonite have been also investigated. The proteins and polyphenols bound by different types of bentonite as well as the quality of the obtained wine (aroma compounds) have been identified using the above-mentioned methods and compared during three harvest periods. Finally, we have established the possibility of using bentonite alternatively on must with the development of a specific test to establish the dose of treatment.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Benoit Bach, Anne-Claire Silvestri, Jean-Christophe Perret, Marilyn Cléroux, Marie Blackford, Agnieszka Kosinska Cagnazzo, Marc Mathieu, Wilfried Andlauer

Changins, viticulture and enology, University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon, Switzerland
Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais, Route du Rawyl 64, 1950 Sion, Switzerland

Contact the author

Keywords

wine, protein, haze, bentonite

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Sforzato di Valtellina DOCG is a special reinforced red wine produced using withered Nebbiolo grapes. The withering process takes place in traditional rooms under natural environmental conditions; it starts immediately after the harvest and ends not before the 1st December of the same year. The process can be performed with different bunch placements that can influence the grapes features.The purpose of the study is to compare the effect on grape physico-chemical parameters for four withering bunch placement systems: hanged clusters (HC), plastic crates (CT), breathable mesh fabric on wooden frames panels (MF), and reed mats (RM). For all the systems studied, the withering length was two months at a temperature between 6 and 19 °C and a relative humidity of 41-88%.

Varietal thiol precursors in Trebbiano di Lugana grape and must

Trebbiano di Lugana (TdL) is a white variety of Vitis vinifera mainly cultivated in an Italian area located south near Garda lake (Verona, north of Italy). This grape cultivar, also known as “Turbiana,” is used for the production of TdL wine with recognized Protected Designation of Origin whose volatile profile was recently determined [1]. The presence of varietal thiols in TdL, namely 3-mercaptohexan-1-ol and its acetate form, conferring the tropical and citrus notes, has been documented. Winemaking strategies were also described with the purpose of protecting and maintain these desired aromas [2]. To the best of our knowledge, the varietal thiol precursors (VTPs) were not previously determined in TdL grape and must. This study aimed to quantify VTPs in both grape during the ripening and must during the pressing. Volatile C6 compounds were also measured in the must fractions.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

The impact of vine pruning methods on physiological development and health condition of Vitis vinifera

This project aims on monitoring the plant development and comparison of the effects of various training systems on vine fertility and physiological processes.