OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Optimizing the use of bentonite for better control of haze formation In white and rosé wines

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

Abstract

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins. The proteins undergo slow conformational changes, leading to aggregation and flocculation phenomena. The process can be accelerated by exposure of wine to high temperatures during transportation or storage. In recent years heat-unstable proteins in white wine were identified as grape class IV chitinases, β-glucanases and a fraction of thaumatin-like proteins. Although proteins play a central role in the formation of turbidity, other components present in wine such as polyphenols, sulfate anion, polysaccharides as well as ionic strength and pH value play an important role in these phenomenon.

 The lack of reliable tests assessing the risk of protein clouding during bottle storage is a recurring problem of winemakers. Currently used test assessing haze potential involves heating which often causes overdosing of fining agent. Despite the large progress in the white wine research and substantial development of the analytical methods applied the phenomenon of white wine haze formation remains unrevealed. The traditional treatment used to stabilize wine includes the addition of bentonite, which is certainly effective but due to its non-specific binding results in a considerable decrease in aroma compounds and therefore the quality of the wine. Thus, a strong need to establish a more selective and economically justified method of wine stabilization, which will preserve the aroma compounds in white and rosé wine, is undeniable.

 

This study aimed at the development of more reliable haze potential tests and more specific treatments for wine. To achieve this objective the knowledge the protein binding properties of different types of commercial bentonite have been analyzed, including the following: elemental analysis, surface charge density, swell index, external and internal specific surface area. The effect of quality of water used for hydration and wine pH on the swelling properties of bentonite have been also investigated. The proteins and polyphenols bound by different types of bentonite as well as the quality of the obtained wine (aroma compounds) have been identified using the above-mentioned methods and compared during three harvest periods. Finally, we have established the possibility of using bentonite alternatively on must with the development of a specific test to establish the dose of treatment.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Benoit Bach, Anne-Claire Silvestri, Jean-Christophe Perret, Marilyn Cléroux, Marie Blackford, Agnieszka Kosinska Cagnazzo, Marc Mathieu, Wilfried Andlauer

Changins, viticulture and enology, University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon, Switzerland
Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais, Route du Rawyl 64, 1950 Sion, Switzerland

Contact the author

Keywords

wine, protein, haze, bentonite

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

Extraction of anthocyanins and tannins have been studied for two grape varieties, Carignan and Grenache, two maturation levels and two vintages, in model solutions and in wines, using UHPLC-MS/MS in the MRM mode  and HPSEC.

Using a grape compositional model to predict harvest time and influence wine style

Linking wine composition to fruit composition is difficult due to the numerous biochemical pathways and substrate transformations that occur during fermentation

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Explorando el potencial bioprotector de levaduras nativas no-Saccharomyces en la vinificación: resultados preliminares

The use of the term bioprotection in winemaking refers to the use of non-chemical methods to prevent the development of undesirable microorganisms (yeasts and/or bacteria). The reason for studying this method is mainly as a natural alternative to the addition of sulfites during the pre-fermentation stages. In winemaking, the addition of s02 has multiple functions, the main ones being antiseptic and antioxidant power.

Diurnal cycles of grapevine leaf water potential under field conditions

Les cycles journaliers du potentiel hydrique foliaire (Ψl) ont été établis toutes les heures, pour différents stades phénologiques, sur deux localités et en fonction de différentes mesures de la température de l’air et du déficit en pression de vapeur (VPD). De faibles valeurs pour ces 2 paramètres ont été enregistrées tout au long de la saison à