Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

Abstract

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine.

However it remains misconceived as an ordinary wine, lacking authenticity. Proud of their wines, the Muscadet producers empowered themselves in an ambitious project dating back to the late 1980s. The essential aspects were established on: a fine selection of plots, distinctive vine growing practices and on a lengthening of wine maturation. This approach allowed them to rebuild the hierarchy of appellations, aimed at establishing strong “terroir” identification, which has led to the emergence of “crus communaux”.

The originality of the present study is twofold. First of all, it concerns implementing practical knowledge to identify the most capable fields to produce fine wines and to adapt oenological practices to express the variations of middle. Numerous questions need to be addressed, such as:

– what internal means does a vineyard have and which outside support mechanisms could the winegrowers successfully utilise to complete this step?

– The actors are also central to this study. How could so few innovators change the winegrowing process? And furthermore, how did the producers transform their vision about their natural environment, their knowledge base and their products? Finally, what are the features of these winegrowers, compared with the rest of the vineyard?

– The analysis is based on an intimate knowledge of the vineyard by the authors, coming from various scientific disciplines. Their account is established from a cartographic analysis on several levels. For example, on an enquiry questionnaire that included hundreds of winegrowers, and at meetings with the different actors who wanted to be part of this building process.

Publication date: September 21, 2023

Issue: Terroir 2012

Type: Article

Authors

Jean-Baptiste MOULENES, Christian ASSELIN, Dominique DELANOÉ, Raphaël SCHIRMER1,*

1 ADES UMR 5185 CNRS / Université Bordeaux 3,12, esplanade des Antilles 33600 Pessac

Contact the author

Tags

IVES Conference Series | Terroir | Terroir 2012

Citation

Related articles…

Guard cell metabolism – A key for regulating drought resilience?

In view of increasing drought frequencies due to climate change, enhancing grapevine resilience to water scarcity has become vital for sustainable viticulture.

The use of rootstock as a lever in the face of climate change and dieback of vineyard

As viticulture faces challenges such as climate change or vineyard dieback, the choice of the variety and rootstock becomes more and more crucial. To study rootstock levers in the Bordeaux region, a parcel of Cabernet Sauvignon (CS) was planted with four rootstocks in 2014. Twenty repetitions of each of the following four rootstocks were set up: 101-14 MGt, Nemadex AB, 420A MGt and Gravesac. The number of bunches, yields and pruning weights of the vine shoots were measured individually on 240 vines from 2017 to 2021. Since 2020, nitrogen status assessed by assimilable nitrogen level, hydric status assessed by δ13C and berry maturity were measured on 80 samples taken from 20 repetitions of the four rootstocks. A lower yield was measured for CS grafted onto Nemadex AB due to the lower number of bunches and the lower weight of berries. The differences between the other three rootstocks are small, but CS grafted onto 420A MGt was the most productive. The CS grafted onto Nemadex AB had the lowest pruning weight while 101-14 MGt had the highest. In 2020, δ13C showed a more moderate water stress with 101-14 MGt and 420A MGt than with Nemadex AB. Surprisingly, the Gravesac was under more stress than the 101-14 MGt. The nitrogen status in the berries was better for Nemadex AB but this was perhaps due to the significantly lower weight of the berries.Rootstock 101-14 MGt attained the highest accumulation of sugars in the berries while 420A MGt allows to preserve higher acidity. The parcel is still young which may explain some of the results. These measures must therefore be continued over the next several years to fully assess the effects of these rootstocks on the development of the vines and the quality of the production under new climatic conditions.

Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Developing a sustainable agricultural production system and acquiring the full potential of land resources requires employing land-use assessment. This entails knowledge of the climate, soil, and topography of the area of interest.

Identification and characterization of polyphenols in fining precipitate

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries.

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress.