OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Abstract

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours. The quanti-fication of different forms of copper in wine may allow winemakers to target more effective strategies for the removal of Cu and also to better understand the likelihood of reductive characters emerging in wines during aging.

A simple colorimetric method, utilising bicinchonic acid (BCA), was validated for the determination of the different forms of Cu in white wines, as well as the total Cu concentration in red wine. The determination of total Cu in white wines utilises an addition of excess silver(I) in order to effectively release copper from sulfide and allow quantitative complexation by BCA. The non-sulfide bound form of Cu in the white wine was determined by BCA analysis of the white wine without silver addition. In the case of red wines, a simple digestion procedure eliminated colour prior to subsequent analysis as per the white wines. The total Cu measured by the colorimetric method had an accuracy equivalent to ICPOES and a linear range of 0.04 to 1.0 mg/L. The different forms of Cu measured in white wines agreed with the results obtained by a more laborious electrochemical method.

The removal of different forms of Cu from white and red wine was subsequently studied using membrane filters of various media and pore size, depth filters and PVI/PVP. Only PVI/PVP could efficiently remove both forms of Cu, whilst the filtration techniques displayed activity for removing the sulfide bound form of Cu. Of the membrane filters, nylon and polytetrafluoroethylene media could adsorb sulfide-bound Cu, with little dependence on pore size, but their capacity for removal decreased rapidly with wine filtration volume. Similar results were observed with cellulose-based depth filters, but much greater removal efficiency was observed for cellulose depth filters impregnated with diatomaceous earth. This type of filter had active re-moval of sulfide-bound Cu from larger volumes of wine. The results allow rapid determination of the Cu forms in wine along with the assessment of the best strategies for their removal.

Abbreviations: PVI/PVP, polyvinylimidazole/polyvinylpyrrolidone.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Nikolaos Kontoudakis Kieran Hirlam, Mark Smith, Paul Smith, Neil Scrimgeour, Paul Bowyer, Eric Wilkes, Andrew Clark

Andrew Clark: Charles Sturt University-National Wine and Grape Industry Centre Eric Wilkes, Neil Scrimgeour, Kieran Hirlam, Mark Smith: The Australian Wine Research Institute Mark Smith: Wine Australia Paul Bowyer: Blue H2O Filtration

Contact the author

Keywords

Copper measurment , Sulfide-bound Cu, Filtration , PVP/PVI 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Un modello di lavoro per lo studio dell’ up-grading tecnologico del vigneto nel Veneto Occidentale. Connettività degli attori e mappatura su dati avepa integrati con rilevamento speditivo e qualitativo

Il lavoro si prefigge di esaminare la propensione alla modernizzazione della viticoltura del Veneto Occidentale, letto attraverso la diffusione di forme di allevamento a sviluppo contenuto.

Arsenic in soil, leaves, grapes and wines

The presence of arsenic in food and beverages creates concern because of the toxicity of this element, classified as carcinogenic in humans. The arsenic concentration in soil, vine leaves and berries

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

NMR profiling of grape musts from some italian regions

With wine fraud, being a widespread problem [1], the need for more sophisticated and precise analytical methods of its detection remains ever persistent.

Selective and sensitive quantification of wine biogenic amines using a dispersive solid-phase extraction clean-up/concentration method

Biogenic amines exist in numerous foods, including wine. They can have aliphatic (putrescine, cadaverine, spermine, and spermidine), aromatic (tyramine and phenylethylamine) and heterocyclic structure (histamine and tryptamine)