OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Abstract

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours. The quanti-fication of different forms of copper in wine may allow winemakers to target more effective strategies for the removal of Cu and also to better understand the likelihood of reductive characters emerging in wines during aging.

A simple colorimetric method, utilising bicinchonic acid (BCA), was validated for the determination of the different forms of Cu in white wines, as well as the total Cu concentration in red wine. The determination of total Cu in white wines utilises an addition of excess silver(I) in order to effectively release copper from sulfide and allow quantitative complexation by BCA. The non-sulfide bound form of Cu in the white wine was determined by BCA analysis of the white wine without silver addition. In the case of red wines, a simple digestion procedure eliminated colour prior to subsequent analysis as per the white wines. The total Cu measured by the colorimetric method had an accuracy equivalent to ICPOES and a linear range of 0.04 to 1.0 mg/L. The different forms of Cu measured in white wines agreed with the results obtained by a more laborious electrochemical method.

The removal of different forms of Cu from white and red wine was subsequently studied using membrane filters of various media and pore size, depth filters and PVI/PVP. Only PVI/PVP could efficiently remove both forms of Cu, whilst the filtration techniques displayed activity for removing the sulfide bound form of Cu. Of the membrane filters, nylon and polytetrafluoroethylene media could adsorb sulfide-bound Cu, with little dependence on pore size, but their capacity for removal decreased rapidly with wine filtration volume. Similar results were observed with cellulose-based depth filters, but much greater removal efficiency was observed for cellulose depth filters impregnated with diatomaceous earth. This type of filter had active re-moval of sulfide-bound Cu from larger volumes of wine. The results allow rapid determination of the Cu forms in wine along with the assessment of the best strategies for their removal.

Abbreviations: PVI/PVP, polyvinylimidazole/polyvinylpyrrolidone.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Nikolaos Kontoudakis Kieran Hirlam, Mark Smith, Paul Smith, Neil Scrimgeour, Paul Bowyer, Eric Wilkes, Andrew Clark

Andrew Clark: Charles Sturt University-National Wine and Grape Industry Centre Eric Wilkes, Neil Scrimgeour, Kieran Hirlam, Mark Smith: The Australian Wine Research Institute Mark Smith: Wine Australia Paul Bowyer: Blue H2O Filtration

Contact the author

Keywords

Copper measurment , Sulfide-bound Cu, Filtration , PVP/PVI 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effects of management and seed mixture on species composition of vineyard inter-row vegetation, soil characteristics and grape berry traits

Context and purpose. Viticulture has exerted a profound influence on the landscape and biodiversity of numerous countries for centuries.

Impact of seaweeds extracts applied to grapevine cv Tempranillo

Grapevine is one of the most-frequently phytosanitary treated crop systems. Consequently, restrictions have been applied by the European Commission on the number of pesticide treatments and the maximum quantity of copper fungicides allowed per year. Moreover, there is a need and an increasing demand for more ecological-sustainable agricultural products.
Seaweeds are currently used as fertilizers in viticulture, as they have been proven to be beneficial in several ways related to growth and nutrition.

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

Effect of grape polysaccharides on the volatile composition and aromatic profile of Viura wines

AIM: Many research studies have analyzed the effect of polysaccharides in the aromatic composition of white wines.