GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Abstract

Context and purpose of the study – Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products.
The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.

Material and methods – In 2011 an intensive vineyard in north-eastern Italy (Trentino) was subjected to three different managements: integrated pest management (IPM), organic management (OM) and biodynamic management (BM). The experimental vineyard (1.5 ha) was divided in twelve plots, four per management with a randomized scheme. BM plots were subjected to green manure between alternate rows (BM+GM). Every autumn, from 2012 to 2018, soil was sampled in four repetitions per management. Air dried soils were analyzed. Exchangeable K and Mg (extraction in 1 M ammonium acetate pH 7 for 1 hour – 1:20 p/v) and bioavailable heavy metals (extraction in DTPA/CaCl2/TEA pH 7.3 for 2 hours – 1:2 w/v) were determined with ICP-OES. TOC and total N were analyzed with elemental analyzer and assimilable P with Olsen method2. Statistical analysis were performed using the RStudio software.

Results – Exchangeable K is the nutrient that exhibited mainly significant differences (P<0.001) among the managements. In detail, OM and IPM showed on average the highest values, proving that manure is a good supplier of K, which is a promoter of photosynthesis3, is involved in sugar translocation from leaf to fruit3,4 and plays an important role in determining the size of the berries, influencing the final yield of crop4. The lower values in biodynamic managements (BM and BM+GM) were due to lack of K supply. Total N did not show significant differences among the three managements. This result highlights how organic manure and leguminosus plants of green manure provide enough nitrogen for the crop needs, as well as conventional practices. Bioavailable heavy metal content was similar among the managements. Although Cu was used (<5 kg/ha) during the whole experimentation on all the plots, it was not found an increase of the bioavailable concentrations in the years, as expected for the accumulation of this metal in soil. The high Cu content in the soil, due to the abuse of this fungicide in the past decades, means that its use at the doses allowed by current regulations does not cause a significant increase in soil concentrations. These results valorize organic and biodynamic practices, being more compatible alternatives to protection of environment and human health than conventional viticulture.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Raffaella MORELLI*, Roberto ZANZOTTI, Daniela BERTOLDI, Enzo MESCALCHIN

Fondazione E. Mach-Technology Transfer Center, via E. Mach 1 , San Michele all’Adige (TN)-38010 Italy

Contact the author

Keywords

vineyard, organic and biodynamic viticulture, soil, nutrients, heavy metals.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

Understanding wine as a sensory, emotional, and cognitive experience to promote and communicate conscious consumption

In the complex scenario that the wine industry and its promotion are currently facing, this research proposes a theoretical expansion of the traditional model used to understand the wine experience, namely the classic sensory, emotional and cognitive triad, moving toward a multidimensional approach that also incorporates cultural, symbolic and contextual dimensions in order to comprehend the conscious experience.

Effects of different crop load and pruning aplications on vi̇ne growing, grape yi̇eld and quality parameters of early sweet (Vitis vinifera L.) grape variety

It is important to examine the yield quality elements of table grape varieties. There are great differences in winter and summer pruning of the early sweet grape variety. For this reason, in the study, the effects of different crop loads and pruning processes on grape yield, quality characteristics and vine development in the early sweet (vitis vinifera L.) Grape variety were investigated.

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).

Diversificazione e valorizzazione di produzioni tipiche sul territorio: I cesanesi

The zone in which the Cesanese vines are cultivated has a secular tradition of red wine­making. This zone is placed between the Simbruini mountains slopes and the surrounding hills and has pedologicai variability but a very homogeneous microclimate.