GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Abstract

Context and purpose of the study – Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products.
The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.

Material and methods – In 2011 an intensive vineyard in north-eastern Italy (Trentino) was subjected to three different managements: integrated pest management (IPM), organic management (OM) and biodynamic management (BM). The experimental vineyard (1.5 ha) was divided in twelve plots, four per management with a randomized scheme. BM plots were subjected to green manure between alternate rows (BM+GM). Every autumn, from 2012 to 2018, soil was sampled in four repetitions per management. Air dried soils were analyzed. Exchangeable K and Mg (extraction in 1 M ammonium acetate pH 7 for 1 hour – 1:20 p/v) and bioavailable heavy metals (extraction in DTPA/CaCl2/TEA pH 7.3 for 2 hours – 1:2 w/v) were determined with ICP-OES. TOC and total N were analyzed with elemental analyzer and assimilable P with Olsen method2. Statistical analysis were performed using the RStudio software.

Results – Exchangeable K is the nutrient that exhibited mainly significant differences (P<0.001) among the managements. In detail, OM and IPM showed on average the highest values, proving that manure is a good supplier of K, which is a promoter of photosynthesis3, is involved in sugar translocation from leaf to fruit3,4 and plays an important role in determining the size of the berries, influencing the final yield of crop4. The lower values in biodynamic managements (BM and BM+GM) were due to lack of K supply. Total N did not show significant differences among the three managements. This result highlights how organic manure and leguminosus plants of green manure provide enough nitrogen for the crop needs, as well as conventional practices. Bioavailable heavy metal content was similar among the managements. Although Cu was used (<5 kg/ha) during the whole experimentation on all the plots, it was not found an increase of the bioavailable concentrations in the years, as expected for the accumulation of this metal in soil. The high Cu content in the soil, due to the abuse of this fungicide in the past decades, means that its use at the doses allowed by current regulations does not cause a significant increase in soil concentrations. These results valorize organic and biodynamic practices, being more compatible alternatives to protection of environment and human health than conventional viticulture.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Raffaella MORELLI*, Roberto ZANZOTTI, Daniela BERTOLDI, Enzo MESCALCHIN

Fondazione E. Mach-Technology Transfer Center, via E. Mach 1 , San Michele all’Adige (TN)-38010 Italy

Contact the author

Keywords

vineyard, organic and biodynamic viticulture, soil, nutrients, heavy metals.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Efficacy of tannins of different botanical origin as partial or total substitute of SO2 to preserve a Cortese white wine during storage in cellar

While SO2 is one of the oldest and widest additive used in enology for its well-known antioxidant, anti-laccase and antimicrobial properties, it can cause health problems in some individuals.

Laying footprints on a new path: proper accounting of biogenic fluxes makes viticulture carbon neutral

To limit the acceleration of global warming we need to reduce greenhouse gases emissions (GHG), making our production processes more carbon-efficient and optimizing absorptions.

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC.