GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Abstract

Context and purpose of the study – Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products.
The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.

Material and methods – In 2011 an intensive vineyard in north-eastern Italy (Trentino) was subjected to three different managements: integrated pest management (IPM), organic management (OM) and biodynamic management (BM). The experimental vineyard (1.5 ha) was divided in twelve plots, four per management with a randomized scheme. BM plots were subjected to green manure between alternate rows (BM+GM). Every autumn, from 2012 to 2018, soil was sampled in four repetitions per management. Air dried soils were analyzed. Exchangeable K and Mg (extraction in 1 M ammonium acetate pH 7 for 1 hour – 1:20 p/v) and bioavailable heavy metals (extraction in DTPA/CaCl2/TEA pH 7.3 for 2 hours – 1:2 w/v) were determined with ICP-OES. TOC and total N were analyzed with elemental analyzer and assimilable P with Olsen method2. Statistical analysis were performed using the RStudio software.

Results – Exchangeable K is the nutrient that exhibited mainly significant differences (P<0.001) among the managements. In detail, OM and IPM showed on average the highest values, proving that manure is a good supplier of K, which is a promoter of photosynthesis3, is involved in sugar translocation from leaf to fruit3,4 and plays an important role in determining the size of the berries, influencing the final yield of crop4. The lower values in biodynamic managements (BM and BM+GM) were due to lack of K supply. Total N did not show significant differences among the three managements. This result highlights how organic manure and leguminosus plants of green manure provide enough nitrogen for the crop needs, as well as conventional practices. Bioavailable heavy metal content was similar among the managements. Although Cu was used (<5 kg/ha) during the whole experimentation on all the plots, it was not found an increase of the bioavailable concentrations in the years, as expected for the accumulation of this metal in soil. The high Cu content in the soil, due to the abuse of this fungicide in the past decades, means that its use at the doses allowed by current regulations does not cause a significant increase in soil concentrations. These results valorize organic and biodynamic practices, being more compatible alternatives to protection of environment and human health than conventional viticulture.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Raffaella MORELLI*, Roberto ZANZOTTI, Daniela BERTOLDI, Enzo MESCALCHIN

Fondazione E. Mach-Technology Transfer Center, via E. Mach 1 , San Michele all’Adige (TN)-38010 Italy

Contact the author

Keywords

vineyard, organic and biodynamic viticulture, soil, nutrients, heavy metals.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Macrowine 2021: available on IVES Conference Series

We were a partner of the 2021 Macrowine international congress. This event was held virtually last June. On IVES Conference Series portal, more than 280 abstracts written by wine scientists are available. They are available in Open Access and are divided into 6...

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Bio-based fertilisers from fruit and vegetable residues for improving soil fertility and vine status in degraded vineyards

The H2020 RUSTICA project aims to propose, demonstrate, and implement technical solutions to convert organic residues from fruit and vegetables into high-quality novel bio-based fertilisers (BBF).

Influence of pre-harvest elicitors treatment during ripening period on phenolic composition in Monastrell grapes

Phenolic compounds are very importants in crop plants, which is why there have been the subject of a large number of studies

Screening of different commercial wine yeast strains: the effect of sugar and copper additions on fermentation and volatile acidity production

The aims of this study were to examine the effect of high sugar concentrations of must and copper residues on different commercial wine yeasts. Copper originating from pesticides has been known to inhibit yeast, but it’s effect on fermentation performance and VA production of different yeast strains had not been investigated in detail.