Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 Vineyard soils and landscapes of the Burgundy Côte (France): a historical construction worth preserving

Vineyard soils and landscapes of the Burgundy Côte (France): a historical construction worth preserving

Abstract

The construction of vineyard landscapes along the Burgundy Côte is the result of geological processes and of human labour. Substratum diversity in this vineyard is the result of a very long history explained by the diversity of Jurassic sedimentary facies and Tertiary tectonic activity. The nature and thickness of Quaternary deposits (Weichselian scree debris and alluvial fans) reflect sediment dynamics concurrent with the last glaciation. As soon as humans started to occupy and cultivate these slopes, the changes they made in the land through crop development and roads began to structure the vineyard plots in a lasting way. The footprint of vine work in soils can be traced back over a millennium. It results mainly from a significant removal of stones when the land was first cultivated and from land management to fight against erosion (construction of retaining walls, transport of earth upslope, etc.). In recent centuries, the expansion of the vineyard follows a complex history (the phylloxera crisis, changes in the way quarries, in particular, were run). Today’s vineyard soils and landscapes are cultural objects that have been shaped over time. The mechanised labour linked to recent replanting cannot be allowed to destroy this natural and cultural heritage. The effects of trenching and other often irreversible actions (e.g. excessive embankments) affect both the visible landscape (the extension of plots and removal of drystone walls and mounds) and the invisible heritage (nature and diversity of soils, buried archaeological heritage). The people of Burgundy who are seeking recognition and listed status for the diversity of climats, their exceptional heritage, must consider the consequences of such practices in the medium and long term.

Publication date: September 25, 2023

Issue: Terroir 2012

Type: Article

Authors

Christophe PETIT1, Emmanuel CHEVIGNY2, Pierre CURMI3, Amélie QUIQUEREZ2, Françoise VANNIER-PETIT4

1 University of Paris 1 Panthéon-Sorbonne UMR 7041 ArScAn, 3 rue Michelet, F-75006 Paris, France
2 University of Burgundy, UMR CNRS 5594 ARTeHIS, University of Burgundy, France
3 UMR CNRS Agrooécologie Dijon, University of Burgundy, Agrosup, INRA, France
4 Geologist, La Rente Neuve, F-21160 FLAVIGNEROT, FRANCE

Contact the author

Keywords

Vineyard soil, geological history, Burgundy, natural and cultural heritage

Tags

IVES Conference Series | Terroir | Terroir 2012

Citation

Related articles…

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Innovative strategies for reducing astringency in Mandilaria wines 

Mandilaria, a red grape variety indigenous to the Aegean islands, is well known for its robust tannins and pronounced astringency, which can challenge the palatability and marketability of its wines. The aim of this study was the reduction of astringency in wines made exclusively from mandilaria grapes through dehydrations practices and targeted winery applications.

The use of Hanseniaspora vineae on the production of base sparkling wine

Non-Saccharomyces yeasts have been associated, for many years, with challenging alcoholic fermentation processes. However, during the last decade the use of non-Saccharomyces yeasts in wine production has become increasingly widespread due to the advantages they can offer in mixed inoculations with Saccharomyces cerevisiae (Sc). In this respect, Hanseniaspora vineae (Hv), in synergy with Saccharomyces spp, represents an interesting opportunity to impart a positive contribution to the aroma complexity of wines. In fact, it is a well-known producer of pleasant esters, such as 2-phenylethyl acetate. This study compares the performances of Hv (strain Hv-205) in sequential inoculation modality to Sc in three Chardonnay musts for base sparkling wine production. No significant differences were observed in basic chemical parameters between wines except for titratable acidity, with a significantly decrease (up to 1.5 g/L) in Hv processes due to malic acid degradation. The analysis of the aroma compounds revealed remarkable differences in concentration of volatile metabolites, among others up to 37-fold increase of 2-phenylethyl acetate. In contrast, lower concentration of its alcohol were detected, suggesting higher acetylation activity by Hv.

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.