Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 Vineyard soils and landscapes of the Burgundy Côte (France): a historical construction worth preserving

Vineyard soils and landscapes of the Burgundy Côte (France): a historical construction worth preserving

Abstract

The construction of vineyard landscapes along the Burgundy Côte is the result of geological processes and of human labour. Substratum diversity in this vineyard is the result of a very long history explained by the diversity of Jurassic sedimentary facies and Tertiary tectonic activity. The nature and thickness of Quaternary deposits (Weichselian scree debris and alluvial fans) reflect sediment dynamics concurrent with the last glaciation. As soon as humans started to occupy and cultivate these slopes, the changes they made in the land through crop development and roads began to structure the vineyard plots in a lasting way. The footprint of vine work in soils can be traced back over a millennium. It results mainly from a significant removal of stones when the land was first cultivated and from land management to fight against erosion (construction of retaining walls, transport of earth upslope, etc.). In recent centuries, the expansion of the vineyard follows a complex history (the phylloxera crisis, changes in the way quarries, in particular, were run). Today’s vineyard soils and landscapes are cultural objects that have been shaped over time. The mechanised labour linked to recent replanting cannot be allowed to destroy this natural and cultural heritage. The effects of trenching and other often irreversible actions (e.g. excessive embankments) affect both the visible landscape (the extension of plots and removal of drystone walls and mounds) and the invisible heritage (nature and diversity of soils, buried archaeological heritage). The people of Burgundy who are seeking recognition and listed status for the diversity of climats, their exceptional heritage, must consider the consequences of such practices in the medium and long term.

Publication date: September 25, 2023

Issue: Terroir 2012

Type: Article

Authors

Christophe PETIT1, Emmanuel CHEVIGNY2, Pierre CURMI3, Amélie QUIQUEREZ2, Françoise VANNIER-PETIT4

1 University of Paris 1 Panthéon-Sorbonne UMR 7041 ArScAn, 3 rue Michelet, F-75006 Paris, France
2 University of Burgundy, UMR CNRS 5594 ARTeHIS, University of Burgundy, France
3 UMR CNRS Agrooécologie Dijon, University of Burgundy, Agrosup, INRA, France
4 Geologist, La Rente Neuve, F-21160 FLAVIGNEROT, FRANCE

Contact the author

Keywords

Vineyard soil, geological history, Burgundy, natural and cultural heritage

Tags

IVES Conference Series | Terroir | Terroir 2012

Citation

Related articles…

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies.

Does bioprotection by adding yeasts present antioxydant properties?

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable.

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.