Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 Vineyard soils and landscapes of the Burgundy Côte (France): a historical construction worth preserving

Vineyard soils and landscapes of the Burgundy Côte (France): a historical construction worth preserving

Abstract

The construction of vineyard landscapes along the Burgundy Côte is the result of geological processes and of human labour. Substratum diversity in this vineyard is the result of a very long history explained by the diversity of Jurassic sedimentary facies and Tertiary tectonic activity. The nature and thickness of Quaternary deposits (Weichselian scree debris and alluvial fans) reflect sediment dynamics concurrent with the last glaciation. As soon as humans started to occupy and cultivate these slopes, the changes they made in the land through crop development and roads began to structure the vineyard plots in a lasting way. The footprint of vine work in soils can be traced back over a millennium. It results mainly from a significant removal of stones when the land was first cultivated and from land management to fight against erosion (construction of retaining walls, transport of earth upslope, etc.). In recent centuries, the expansion of the vineyard follows a complex history (the phylloxera crisis, changes in the way quarries, in particular, were run). Today’s vineyard soils and landscapes are cultural objects that have been shaped over time. The mechanised labour linked to recent replanting cannot be allowed to destroy this natural and cultural heritage. The effects of trenching and other often irreversible actions (e.g. excessive embankments) affect both the visible landscape (the extension of plots and removal of drystone walls and mounds) and the invisible heritage (nature and diversity of soils, buried archaeological heritage). The people of Burgundy who are seeking recognition and listed status for the diversity of climats, their exceptional heritage, must consider the consequences of such practices in the medium and long term.

Publication date: September 25, 2023

Issue: Terroir 2012

Type: Article

Authors

Christophe PETIT1, Emmanuel CHEVIGNY2, Pierre CURMI3, Amélie QUIQUEREZ2, Françoise VANNIER-PETIT4

1 University of Paris 1 Panthéon-Sorbonne UMR 7041 ArScAn, 3 rue Michelet, F-75006 Paris, France
2 University of Burgundy, UMR CNRS 5594 ARTeHIS, University of Burgundy, France
3 UMR CNRS Agrooécologie Dijon, University of Burgundy, Agrosup, INRA, France
4 Geologist, La Rente Neuve, F-21160 FLAVIGNEROT, FRANCE

Contact the author

Keywords

Vineyard soil, geological history, Burgundy, natural and cultural heritage

Tags

IVES Conference Series | Terroir | Terroir 2012

Citation

Related articles…

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

Entre ce que les consommateurs disent, ce qu’ils apprécient et ce qu’ils achètent… où se situent les vins de chasselas ?

Originaire du bassin lémanique, le chasselas est l’emblème de la viticulture suisse. Pour autant, les surfaces de chasselas n’ont cessé de diminuer, passant de 6’585 hectares en 1986 à près de 3’600 aujourd’hui, reflet d’une baisse de consommation. Une récente étude a cherché à comprendre les raisons de ce désintérêt. Réalisée dans

Biophysical and agronomical drivers of the distribution of Plasmopara viticola oospores in vineyard soils

Grapevine downy mildew (GDM), caused by the obligate biotroph oomycete Plasmopara viticola, is one of the most destructive diseases in viticulture.

Effects of soil characteristics on manganese transfer from soil to vine and wine

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

On sample preparation methods for fermentative beverage VOCs profiling by GCxGC-TOFMS

Study the influence of sample preparation methods on the volatile organic compounds (VOCs) profiling for fermentative beverages by GCxGC-TOFMS analysis. METHODS: Five common sample preparation methods were tested on pooled red wine, white wine, cider, and beer. Studied methods were DHS, Liquid-liquid extraction, mSBSE, SPE and SPME. VOCs were analyzed by GCxGC-TOFMS followed by data analysis with ChromaTOF. RESULTS: The volatile organic compounds (VOCs) profiling results were very dependent on the sample preparation methods.