OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

Abstract

In enology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites. 
More particularly, non-Saccharomyces yeasts are used as a total or partial alternative to sulphites. 
However, scientific data capable of proving the effectiveness of adding these yeasts on grape must remain scarce. A single study in white winemaking showed that early addition of a non-Saccharomyces T. delbrueckii strain could be a microbiological and chemical alternative to sulphites (Simonin et al., 2018). 
However, there is a lack of scientific data concerning red winemaking where the process allows to leave the yeasts added during the whole winemaking. This study reports for the first time the analysis of microbiological and chemical effects of one Metschnikowia pulcherrima strain, inoculated at the beginning of the red winemaking process in three wineries as an alternative to sulphiting. The implantation of the M. pulcherrima was successful in all the wineries and effectively limited the development of spoilage microorganisms in the same way as the addition of sulphites. The addition of non-Saccharomyces strain could protect must and wine from oxidation as demonstrated by the proanthocyanidin and anthocyanin analysis. 
Adding M. pulcherrima had no effect on wine volatile compounds and sensorial analysis. However, the untargeted analysis by FTICR-MS highlighted a bio-protection signature and an activation of certain metabolic pathways.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Scott Simonin, Hervé Alexandre, Jordi Ballester, Philippe Schmitt-Kopplin, Beatriz Quintanilla-Casas, Stefania Vichi, Dominique Peyron, Chloé Roullier-Gall, Raphaëlle Tourdot-Marécha

UMR PAM, Univ. de Bourgogne Franche Comté/Agrosup Dijon, Equipe VAlMiS, IUVV, Dijon (France)
CSGA, Univ. de Bourgogne, France
Analytical Food Chemistry, Technische Universität München, Germany
INSA – XaRTA, University of Barcelona, Spain

Contact the author

Keywords

Wine bio-protection, Metschnikowia pulcherrima, Metabolomic, Volatile and phenolic compounds

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

WINE CONSUMER TRADE-OFF BETWEEN ORGANOLEPTIC CHARACTERISTICS AND SUSTAINABLE CLAIMS. AN EXPERIMENT ON RED WINES FROM BORDEAUX REGION

In economics, the perception of wine quality is not limited to sensorial characteristics: an indication of the region of production significantly affects the perception of quality and consumers’ WTP ([1]; [2]). However, [3] or more recently [4] show that even if a wine has an organic label, the taste of wine remains the predominant criterion in consumer preferences. The contribution of our experiment is to evaluate the impact of responsible attributes (organic label, Non Added Sulfites, HVE certification) on the appreciation of several red wines on the market. More than 280 consumers participated to the present study and they perform 25 tastings divided into 5 different sessions. 20 different red wines from Bordeaux Area are tasted.

Influence of pre-fermentative steps on varietal thiol precursors

The content of 3-sulfanyl-1-hexanol and its acetate ester in wine is affected by a number of factors, including the concentration of its precursors S-3-(hexan-1-ol)-L-glutathione (G-3SH),

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Protected Designation of Origin (D.P.O.) Valdepeñas: classification and map of soils

The objective of the work described here is the elaboration of a map of the different types of vineyard soils that to guide the famers in the choice of the most productive vine rootstocks and varieties. 90 vineyard soils profiles were analysed in the entire territory of the Origen Denominations of Valdepeñas. The sampling was carried out in 2018 (June to October) by making a sampling grid, followed by photointerpretation and control in the field. The studied soils can be grouped into 9 different soil types (according to FAO 2006 classification): Leptosols, Regosols, Fluvisols, Gleysols, Cambisols, Calcisols, Luvisols and Anthrosols. A map showing the soil distribution with different type of soils has been made with the ArcGIS program. Regarding to the choice of rootstock, Calcisoles are soils with a high active limestone content, so the rootstocks used in these soils must be resistant to this parameter; Luvisols are deep soils with high clay content, so they will support vigorous rootstocks. Because the cartographic units are composed of two or more subgroups, with are associated in variable proportions, 9 different soil associations have been established; Unit 1: Leptosols, Cambisols and Luvisols (80%, 15% and 5% respectively); Unit 2: Cambisols with Regosols and Luvisols (40%, 30% and 30% respectively); Unit 3: Cambisols and Gleysols with Regosols (40%, 40% and 20% respectively); Unit 4: Regosols with Cambisols, Leptosols and Calcisols (40%, 30%, 15% and 15% respectively); Unit 5: Cambisols, Leptosols, Calcisols and Regosols (25% each of them); Unit 6: Luvisols with Cambisol and Calcisols (80%, 10% and 10% respectively); Unit 7: Luvisols and Calcisols with Cambisols (40%, 40% and 20% respectively); Unit 8: Calcisols with, Cambisols and Luvisols (80%, 10% and 10% respectively); Unit 9: Anthrosols. These study allow to elaborate the first map of vineyard soils of this Protected Designation of Origin in Castilla-La Mancha.