OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

Abstract

In enology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites. 
More particularly, non-Saccharomyces yeasts are used as a total or partial alternative to sulphites. 
However, scientific data capable of proving the effectiveness of adding these yeasts on grape must remain scarce. A single study in white winemaking showed that early addition of a non-Saccharomyces T. delbrueckii strain could be a microbiological and chemical alternative to sulphites (Simonin et al., 2018). 
However, there is a lack of scientific data concerning red winemaking where the process allows to leave the yeasts added during the whole winemaking. This study reports for the first time the analysis of microbiological and chemical effects of one Metschnikowia pulcherrima strain, inoculated at the beginning of the red winemaking process in three wineries as an alternative to sulphiting. The implantation of the M. pulcherrima was successful in all the wineries and effectively limited the development of spoilage microorganisms in the same way as the addition of sulphites. The addition of non-Saccharomyces strain could protect must and wine from oxidation as demonstrated by the proanthocyanidin and anthocyanin analysis. 
Adding M. pulcherrima had no effect on wine volatile compounds and sensorial analysis. However, the untargeted analysis by FTICR-MS highlighted a bio-protection signature and an activation of certain metabolic pathways.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Scott Simonin, Hervé Alexandre, Jordi Ballester, Philippe Schmitt-Kopplin, Beatriz Quintanilla-Casas, Stefania Vichi, Dominique Peyron, Chloé Roullier-Gall, Raphaëlle Tourdot-Marécha

UMR PAM, Univ. de Bourgogne Franche Comté/Agrosup Dijon, Equipe VAlMiS, IUVV, Dijon (France)
CSGA, Univ. de Bourgogne, France
Analytical Food Chemistry, Technische Universität München, Germany
INSA – XaRTA, University of Barcelona, Spain

Contact the author

Keywords

Wine bio-protection, Metschnikowia pulcherrima, Metabolomic, Volatile and phenolic compounds

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Agrovoltaic on vineyards: preliminary resuls on seasonal and diurnal whole-canopy gas exchange

Context and purpose of the study. Albeit standing as a fashionable research topic dual use of land as viti-voltaic still lacks of fundamental knowledge about whole canopy grapevine response to altered microclimate under panels vs open field conditions.

Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Sterols are a class of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality (Daum et al., 1998).

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

he final concentration of phenolic compounds in the wines is usually lower than what might be expected given the phenolic concentration measured in grapes