OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

Abstract

In enology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites. 
More particularly, non-Saccharomyces yeasts are used as a total or partial alternative to sulphites. 
However, scientific data capable of proving the effectiveness of adding these yeasts on grape must remain scarce. A single study in white winemaking showed that early addition of a non-Saccharomyces T. delbrueckii strain could be a microbiological and chemical alternative to sulphites (Simonin et al., 2018). 
However, there is a lack of scientific data concerning red winemaking where the process allows to leave the yeasts added during the whole winemaking. This study reports for the first time the analysis of microbiological and chemical effects of one Metschnikowia pulcherrima strain, inoculated at the beginning of the red winemaking process in three wineries as an alternative to sulphiting. The implantation of the M. pulcherrima was successful in all the wineries and effectively limited the development of spoilage microorganisms in the same way as the addition of sulphites. The addition of non-Saccharomyces strain could protect must and wine from oxidation as demonstrated by the proanthocyanidin and anthocyanin analysis. 
Adding M. pulcherrima had no effect on wine volatile compounds and sensorial analysis. However, the untargeted analysis by FTICR-MS highlighted a bio-protection signature and an activation of certain metabolic pathways.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Scott Simonin, Hervé Alexandre, Jordi Ballester, Philippe Schmitt-Kopplin, Beatriz Quintanilla-Casas, Stefania Vichi, Dominique Peyron, Chloé Roullier-Gall, Raphaëlle Tourdot-Marécha

UMR PAM, Univ. de Bourgogne Franche Comté/Agrosup Dijon, Equipe VAlMiS, IUVV, Dijon (France)
CSGA, Univ. de Bourgogne, France
Analytical Food Chemistry, Technische Universität München, Germany
INSA – XaRTA, University of Barcelona, Spain

Contact the author

Keywords

Wine bio-protection, Metschnikowia pulcherrima, Metabolomic, Volatile and phenolic compounds

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Agronomic and qualitative effects of early leaf removal on cv.

Aim: The regulation of the vegetative-reproductive balance of a vineyard is a critical aspect for the quality of grapes. Early leaf removal, generally applied before the phenological stage of flowering, is mainly used as a technique to control yield and improve grape health, aimed at increasing the quality of the wine.

Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate

Precocity for fruit ripening is a genetically determined characteristic that is highly variable from one cultivar to another. In traditional wine-growing regions of Europe, growers have used this property to adapt the vines to local climatic conditions in order to maximize terroir expression

Characterizing graft union formation in different scion/rootstock combinations of grapevine 

In most viticultural regions, grapevines are cultivated grafted, employing either hybrid or pure species of various American Vitis spp., such as V. berlandieri, V. rupestris, and V. riparia, as grapevine rootstocks. These rootstocks play a crucial role in providing resistance to the Phylloxera insect pest. Beyond Phylloxera resistance, it is desirable for grapevine rootstocks to exhibit resistance to other soil-borne pathogens and adaptability to abiotic stress conditions. The introduction of new rootstocks holds promise for adapting agriculture to climate change without altering the characteristics of the final harvested product.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.