OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

Abstract

In enology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites. 
More particularly, non-Saccharomyces yeasts are used as a total or partial alternative to sulphites. 
However, scientific data capable of proving the effectiveness of adding these yeasts on grape must remain scarce. A single study in white winemaking showed that early addition of a non-Saccharomyces T. delbrueckii strain could be a microbiological and chemical alternative to sulphites (Simonin et al., 2018). 
However, there is a lack of scientific data concerning red winemaking where the process allows to leave the yeasts added during the whole winemaking. This study reports for the first time the analysis of microbiological and chemical effects of one Metschnikowia pulcherrima strain, inoculated at the beginning of the red winemaking process in three wineries as an alternative to sulphiting. The implantation of the M. pulcherrima was successful in all the wineries and effectively limited the development of spoilage microorganisms in the same way as the addition of sulphites. The addition of non-Saccharomyces strain could protect must and wine from oxidation as demonstrated by the proanthocyanidin and anthocyanin analysis. 
Adding M. pulcherrima had no effect on wine volatile compounds and sensorial analysis. However, the untargeted analysis by FTICR-MS highlighted a bio-protection signature and an activation of certain metabolic pathways.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Scott Simonin, Hervé Alexandre, Jordi Ballester, Philippe Schmitt-Kopplin, Beatriz Quintanilla-Casas, Stefania Vichi, Dominique Peyron, Chloé Roullier-Gall, Raphaëlle Tourdot-Marécha

UMR PAM, Univ. de Bourgogne Franche Comté/Agrosup Dijon, Equipe VAlMiS, IUVV, Dijon (France)
CSGA, Univ. de Bourgogne, France
Analytical Food Chemistry, Technische Universität München, Germany
INSA – XaRTA, University of Barcelona, Spain

Contact the author

Keywords

Wine bio-protection, Metschnikowia pulcherrima, Metabolomic, Volatile and phenolic compounds

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Sensory and consumer perceptions, and consumption barriers of low and no-alcohol wines in Trentino/Alto Adige

The growing demand for non-alcoholic beverages, driven by health-conscious consumers and shifting social norms, has positioned dealcoholized wines as a promising alternative in the global beverage industry (Akhtar et al., 2025, in press; Kakroo, 2024).

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

The relationship between wind exposure and viticultural performance of Vitis vinifera L. cv. Merlot in a coastal vineyard (South Africa)

The South Western Cape of South Africa is exposed to strong southerly and south easterly synoptic winds during the growth period of the grapevine. The development of sea breezes in the afternoon is also a phenomenon associated with the ripening period of grapes cultivated in this coastal area. Wind is one of the environmental variables having the greatest spatial variation but the implications of regular exposure to wind for the performance of the grapevine has not yet been determined for vineyards in the South Western Cape. This study was initiated to meet this need.
The study was conducted in a hedge-trellised vineyard of Vitis vinifera L. cv Merlot with north east – south west row direction. Thirty experimental sites, each consisting of 14 vines, were identified as being exposed to wind or sheltered based on hand-held anemometer readings during the 2001/2002 season. Four stationary anemometers were strategically positioned between the thirty sites. Stomatal conductance and leaf temperature were measured with a PP systems porometer. Vegetative and yield measurements were performed during the 2002/2003 season. The t-test of equal variance was used to determine significant differences in measured parameters between exposed and sheltered grapevines.
Stomatal conductance and leaf area were significantly reduced by exposure to wind. This was associated with a significant reduction in the leaf area of primary shoots, related to shorter shoots, but a significant augmentation of secondary shoot leaf number and area. The number of bunches per vine and yield were also reduced for exposed vines. The berry potassium content was significantly increased for exposed grapevines.
This demonstrates that exposure to wind can result in significant within-vineyard, and potentially between-vineyard, variability in grapevine physiology, vegetative growth, yield and berry composition, with implications for wine style and quality.

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.