Macrowine 2021
IVES 9 IVES Conference Series 9 Pesticide removal in wine with a physical treatment by molecular sieving

Pesticide removal in wine with a physical treatment by molecular sieving

Abstract

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed. First, it could be a risk of organoleptic defects resulting in a loss of the wine quality and a deep change in its typicity. Second contaminants may be harmful on human health. Beyond these aspects, with the emergence of regulations and commercial requirements, these contaminants can also influence negatively the commercial image of the contaminated wine. Among the exogenous contaminants of the wines, pesticides are the family molecules on which the general public is conversant about. Even if there is no proven toxicological risk associated with the presence of pesticide residues in the wines, this issue is a major concern for consumers and producers. Recently several articles were published in France and indicated a widespread contamination of wines from conventional or organic wines. These articles also highlight the lack of official Maximum Residue Limit for wine. It is also reported that, among the residues detected, many molecules are possible or probable carcinogens, toxic for the development or the reproduction, endocrine disruptors or neurotoxic. Few physical processes are currently available to remove pesticide residues from wine. Based on that observation, the objective of this study was to evaluate the ability of a new physical treatment of wine by molecular sieving with Zeolites to remove pesticide residues. Zeolites are already widely used in water or air treatment applications. Natural Zeolites are low cost abundant resources. These are crystalline aluminosilicates. One of the main characteristics of these solids is the development of regular pore size in the microporous domain. According to their preparation, they have physicochemical properties such as cation exchange, molecular sieving, catalysis, and adsorption. This article describes the selection of a Zeolite able to remove a great variety of pesticides used in vine growing. The results of a treatment trial done on a red wine contaminated with 21 pesticides frequently detected in wines are also presented. All the molecules are removed with an elimination yield higher than 90%. Their removal is influenced by the Zeolite concentration. Our first trials also indicate no influence of such a treatment on red wine key physico-chemical parameters and aromas. Further tests will be performed on other types of wine and the influence of Zeolites treatment on the perception of winetasters will be investigated.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Arnaud Massot*, Céline Franc, Fabrice Meunier, Gilles De Revel, Laurent Riquier, Martine Mietton-Peuchot

*Amarante Process

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life.

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.