GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

Abstract

Context and purpose of this study – The use of hybrids in viticulture is one of the alternatives for sustainable production in hot and rainy regions during grapevine maturation. This sustainable production concerns the reduction of pesticide use, adaptation to climate and control of vine decline. The SR 0.501-17 wine grape hybrid, developed in the grapevine program of the Agronomic Institute of Campinas (IAC), is characterized by producing white grapes with small spherical berries with seeds. The agronomic characterization of this hybrid, especially in different climatic conditions, as well as the evaluation of its performance in winemaking are necessary. The objective of this work was to characterize the duration and thermal requirements of the different phenological stages and the influence of rainfall on the physicochemical characteristics of the must in two contrasting climate regions of the State of São Paulo.

Material and methods – The phenology, thermal requirements expressed in degree-days, soluble solids content and titratable acidity of the hybrid were evaluated during the grape growing seasons from 2012 to 2016, in contrasting climatic conditions at Jundiaí at east and Votuporanga at northwest of the São Paulo State-Brazil.

Results – The average duration of the pruning-harvest period was 146 days in Jundiaí and 131 days in Votuporanga and the average duration of the grape maturation period (beginning of berry softening to harvest) was 29 and 27 days, respectively for Jundiaí and Votuporanga. The thermal requirement expressed in degrees-days for the hybrid growth cycle was 1663 and 1923, and for the maturation period, 390 and 485, respectively for Jundiaí and Votuporanga, SP. Rainfall during the maturation period showed negative correlation with total soluble solids and maturation index and positive correlation with titratable acidity. The effect of temperature on vine growth cycle were more pronounced in Jundiaí in comparison to Votuporanga while the effect of rainfall on the maturation characteristics were more effective in Votuporanga when compared to Jundiaí.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Mara Fernandes MOURA1*, Mário José PEDRO JÚNIOR 2, José Luiz HERNANDES1

1* Instituto Agronômico de Campinas, Centro Avançado de Pesquisa de Frutas, Av. Luiz Pereira dos Santos, 1500, CEP. 13214-820, Jundiaí, São Paulo, Brasil
2 Instituto Agronômico de Campinas, Centro de Solos e Recursos Ambientais, Bolsista do CNPq (Processo 302162/2016-0). Av. Barão de Itapura, 1481, CEP 13020-902, Campinas, São Paulo, Brasil

Contact the author

Keywords

cycle duration, degree-days, soluble solids, titratable acidity

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Vulnerability of vineyard soils to compaction: the case study of DOC Piave (Veneto region, Italy)

The objective of this work is to study the vulnerability of vineyard soil to compaction.

The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

Over the years, microoxygenation (MOX) has become a popular vinification technique to improve wine sensory qualities. However, among the impacting factors reported

Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

The study was performed in the summer of 2007, the point of confluence of a rather atypical vintage year in the area with abnormally low temperatures after a very humid spring

Market analysis of Chilean Pinot noir, Carménère, and Cabernet-Sauvignon wines: A comparative study of chemical parameters across low, medium, and high price segments

Wine quality is a complex concept determined by multiple factors, including vineyard management, winemaking operations, and the sensory perception of key attributes.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.