GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

Abstract

Context and purpose of this study – The use of hybrids in viticulture is one of the alternatives for sustainable production in hot and rainy regions during grapevine maturation. This sustainable production concerns the reduction of pesticide use, adaptation to climate and control of vine decline. The SR 0.501-17 wine grape hybrid, developed in the grapevine program of the Agronomic Institute of Campinas (IAC), is characterized by producing white grapes with small spherical berries with seeds. The agronomic characterization of this hybrid, especially in different climatic conditions, as well as the evaluation of its performance in winemaking are necessary. The objective of this work was to characterize the duration and thermal requirements of the different phenological stages and the influence of rainfall on the physicochemical characteristics of the must in two contrasting climate regions of the State of São Paulo.

Material and methods – The phenology, thermal requirements expressed in degree-days, soluble solids content and titratable acidity of the hybrid were evaluated during the grape growing seasons from 2012 to 2016, in contrasting climatic conditions at Jundiaí at east and Votuporanga at northwest of the São Paulo State-Brazil.

Results – The average duration of the pruning-harvest period was 146 days in Jundiaí and 131 days in Votuporanga and the average duration of the grape maturation period (beginning of berry softening to harvest) was 29 and 27 days, respectively for Jundiaí and Votuporanga. The thermal requirement expressed in degrees-days for the hybrid growth cycle was 1663 and 1923, and for the maturation period, 390 and 485, respectively for Jundiaí and Votuporanga, SP. Rainfall during the maturation period showed negative correlation with total soluble solids and maturation index and positive correlation with titratable acidity. The effect of temperature on vine growth cycle were more pronounced in Jundiaí in comparison to Votuporanga while the effect of rainfall on the maturation characteristics were more effective in Votuporanga when compared to Jundiaí.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Mara Fernandes MOURA1*, Mário José PEDRO JÚNIOR 2, José Luiz HERNANDES1

1* Instituto Agronômico de Campinas, Centro Avançado de Pesquisa de Frutas, Av. Luiz Pereira dos Santos, 1500, CEP. 13214-820, Jundiaí, São Paulo, Brasil
2 Instituto Agronômico de Campinas, Centro de Solos e Recursos Ambientais, Bolsista do CNPq (Processo 302162/2016-0). Av. Barão de Itapura, 1481, CEP 13020-902, Campinas, São Paulo, Brasil

Contact the author

Keywords

cycle duration, degree-days, soluble solids, titratable acidity

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Smoke tainted wine – what now?

The frequency of bushfires close to wine regions around the world has increased in the last two decades. The economic losses incurred when grapes and wines are discarded due to ‘smoke taint’ are substantial (i.e., hundreds of millions of dollars). Efforts to mitigate and ameliorate smoke taint are therefore crucial. Chardonnay, rosé and cabernet sauvignon wines made from grapes exposed to smoke during the 2020 wildfires in eastern Australia were subjected to various amelioration techniques: the addition of activated carbons, molecularly imprinted polymers (mips), and a proprietary resin (either directly, or following membrane filtration); spinning cone column (scc) distillation; and finally, transformation into vinegar.

Application of grape pomace and stem extracts on Vitis vinifera L. cv. Monastrell: Increased stilbene content of grapes and wines

Pomace and grape stems are the main solid organic waste from winery industries, resulting from the pressing and/or fermentation processes it is generated in large amounts in many parts of the world

Development of a new lab-scale carbonation method for applications to sparkling wines

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their
visual appearance, aromas and mouthfeel.

The Gibberellic-Acid Insensitive gene Vvgai1 impacts both vegetative growth and organogenesis rate in Vitis labruscana

Context and purpose of the study. As other perennial crops grapevine is facing the challenges of climate changes. One of the major issues is global warming and variations of the water budget.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.