GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

Abstract

Context and purpose of this study – The use of hybrids in viticulture is one of the alternatives for sustainable production in hot and rainy regions during grapevine maturation. This sustainable production concerns the reduction of pesticide use, adaptation to climate and control of vine decline. The SR 0.501-17 wine grape hybrid, developed in the grapevine program of the Agronomic Institute of Campinas (IAC), is characterized by producing white grapes with small spherical berries with seeds. The agronomic characterization of this hybrid, especially in different climatic conditions, as well as the evaluation of its performance in winemaking are necessary. The objective of this work was to characterize the duration and thermal requirements of the different phenological stages and the influence of rainfall on the physicochemical characteristics of the must in two contrasting climate regions of the State of São Paulo.

Material and methods – The phenology, thermal requirements expressed in degree-days, soluble solids content and titratable acidity of the hybrid were evaluated during the grape growing seasons from 2012 to 2016, in contrasting climatic conditions at Jundiaí at east and Votuporanga at northwest of the São Paulo State-Brazil.

Results – The average duration of the pruning-harvest period was 146 days in Jundiaí and 131 days in Votuporanga and the average duration of the grape maturation period (beginning of berry softening to harvest) was 29 and 27 days, respectively for Jundiaí and Votuporanga. The thermal requirement expressed in degrees-days for the hybrid growth cycle was 1663 and 1923, and for the maturation period, 390 and 485, respectively for Jundiaí and Votuporanga, SP. Rainfall during the maturation period showed negative correlation with total soluble solids and maturation index and positive correlation with titratable acidity. The effect of temperature on vine growth cycle were more pronounced in Jundiaí in comparison to Votuporanga while the effect of rainfall on the maturation characteristics were more effective in Votuporanga when compared to Jundiaí.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Mara Fernandes MOURA1*, Mário José PEDRO JÚNIOR 2, José Luiz HERNANDES1

1* Instituto Agronômico de Campinas, Centro Avançado de Pesquisa de Frutas, Av. Luiz Pereira dos Santos, 1500, CEP. 13214-820, Jundiaí, São Paulo, Brasil
2 Instituto Agronômico de Campinas, Centro de Solos e Recursos Ambientais, Bolsista do CNPq (Processo 302162/2016-0). Av. Barão de Itapura, 1481, CEP 13020-902, Campinas, São Paulo, Brasil

Contact the author

Keywords

cycle duration, degree-days, soluble solids, titratable acidity

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory

The antioxidant properties of wine lees extracts in model wine

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry.

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.

Use of hyperspectral data for assessing vineyard biophysical and quality parameters in northern Italy

A total of 39 study sites from 11 commercial vineyards located in two traditional growing areas of Northern Italy were identified for airborne hyperspectral acquisition in summer 2009 with the Aisa-EAGLE Airborne Hyperspectral Imaging Sensor.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.