GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Predatory Arthropods associated with potential locally-adapted native insectary plants for Australian vineyards

Predatory Arthropods associated with potential locally-adapted native insectary plants for Australian vineyards

Abstract

Context and purpose of the study – Three locally-adapted native plants were evaluated to determine their capacity to provide insectary benefits to predatory arthropods in association with vineyards, and thereby to enhance biological control of insect pests. Native plants are preferred as supplementary flora, as they are naturally adapted to Australia’s climatic conditions.

Materials and methods – Stands of mature Bursaria spinosa, Leptospermum continentaleand Rytidosperma ssp. located adjacent to or in the mid-rows of Adelaide Hills, Barossa Valley and Eden Valley vineyards were sampled for arthropods in 2013/14. Vitis viniferawas also sampled.

Results – Twenty seven thousand and ninety-one individual invertebrate specimens were collected, comprising 20 orders and 287 morphospecies. Eight thousand, eight hundred and eighty predators, 6,790 herbivores and 11,421 other specimens were collected. Predatory arthropods dominated the diversity of morphospecies present on each plant. Out of a total of 98 predatory morphospecies, 67 were found on B. spinosa, 63 on L. continentale, 56 on V. vinifera and 38 in association with Rytidosperma ssp. The difference between predatory and herbivore morphospecies was highest on Rytidosperma ssp. (2:1 predators: herbivores), followed by L. continentale, V. vinifera and B. spinosa. The richness of predator morphospecies across all plant types was nearly double the number found in association with grapevines. It may be possible to increase the functional diversity of predatory arthropods by more than 3x when either B. spinosa or L. continentale is present versus grapevines only, and increase the net number of predator morphospecies by around 27% when Rytidosperma ssp. are planted in combination with the grapevines. The selected plants provide a suitable habitat to support diverse and functional populations of predatory arthropods. The opportunity to plant selected native insectary species could help wine grape growers save time and resources by producing fruit with lower pest incidence, while enhancing biodiversity of their vineyards.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

M. J. RETALLACK12, L. J. THOMSON3, M. A. KELLER2

1* Retallack Viticulture Pty Ltd, Crafers West, South Australia 5152, Australia
2 School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia 5064, Australia 
3 School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia

Contact the author

Keywords

Bursaria spinosa, Leptospermum continentale,insectary, Rytidosperma ssp., predatory arthropods, vineyards

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Root water uptake patterns in rootstock-scion interactions influence grape water use strategies in a Mediterranean vineyard

Increasing drought is the most important impact of the ongoing climate change in the Mediterranean Basin, and it is predicted to result in productivity decreases and changes in grape quality.

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

High resolution remote sensing for mapping intra-block vine vigour heterogeneity

In vineyard management, the block is considered today as the technical work unit. However, considerable variability can exist inside a block with regard to physiological parameters, such as vigour, particularly because of soil heterogeneity. To represent this variability spatially, many measurements have to be taken, which is costly in both time and money. High resolution remote sensing appears to be an efficient tool for mapping intra-block heterogeneity.

Utilizing ozone for the management of powdery mildew (Erysiphe necator Schwein.) in vineyards: potential and challenges

Powdery mildew, caused by fungal pathogens, poses a significant threat to grapevines in the DOCa Rioja region. In efforts to improve control strategies while reducing reliance on conventional phytosanitary products, ozone could constitute a potential alternative. However, it has short persistence, thus requiring frequent treatments. This study aimed to assess the suitability of ozone as an active substance for controlling powdery mildew within a phytosanitary strategy aimed at reducing conventional phytosanitary product usage. The strategy integrating ozone with conventional products yielded powdery mildew levels comparable to conventional treatments in both disease incidence and severity.

Vineyard soils and landscapes of the Burgundy Côte (France): a historical construction worth preserving

The construction of vineyard landscapes along the Burgundy Côte is the result of geological processes and of human labour. Substratum diversity in this vineyard is the result of a very long history explained by the diversity of Jurassic sedimentary facies and Tertiary tectonic activity. The nature and thickness of Quaternary deposits (Weichselian scree debris and alluvial fans) reflect sediment dynamics concurrent with the last glaciation.