GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Predatory Arthropods associated with potential locally-adapted native insectary plants for Australian vineyards

Predatory Arthropods associated with potential locally-adapted native insectary plants for Australian vineyards

Abstract

Context and purpose of the study – Three locally-adapted native plants were evaluated to determine their capacity to provide insectary benefits to predatory arthropods in association with vineyards, and thereby to enhance biological control of insect pests. Native plants are preferred as supplementary flora, as they are naturally adapted to Australia’s climatic conditions.

Materials and methods – Stands of mature Bursaria spinosa, Leptospermum continentaleand Rytidosperma ssp. located adjacent to or in the mid-rows of Adelaide Hills, Barossa Valley and Eden Valley vineyards were sampled for arthropods in 2013/14. Vitis viniferawas also sampled.

Results – Twenty seven thousand and ninety-one individual invertebrate specimens were collected, comprising 20 orders and 287 morphospecies. Eight thousand, eight hundred and eighty predators, 6,790 herbivores and 11,421 other specimens were collected. Predatory arthropods dominated the diversity of morphospecies present on each plant. Out of a total of 98 predatory morphospecies, 67 were found on B. spinosa, 63 on L. continentale, 56 on V. vinifera and 38 in association with Rytidosperma ssp. The difference between predatory and herbivore morphospecies was highest on Rytidosperma ssp. (2:1 predators: herbivores), followed by L. continentale, V. vinifera and B. spinosa. The richness of predator morphospecies across all plant types was nearly double the number found in association with grapevines. It may be possible to increase the functional diversity of predatory arthropods by more than 3x when either B. spinosa or L. continentale is present versus grapevines only, and increase the net number of predator morphospecies by around 27% when Rytidosperma ssp. are planted in combination with the grapevines. The selected plants provide a suitable habitat to support diverse and functional populations of predatory arthropods. The opportunity to plant selected native insectary species could help wine grape growers save time and resources by producing fruit with lower pest incidence, while enhancing biodiversity of their vineyards.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

M. J. RETALLACK12, L. J. THOMSON3, M. A. KELLER2

1* Retallack Viticulture Pty Ltd, Crafers West, South Australia 5152, Australia
2 School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia 5064, Australia 
3 School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia

Contact the author

Keywords

Bursaria spinosa, Leptospermum continentale,insectary, Rytidosperma ssp., predatory arthropods, vineyards

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Biological de-sugaring of grape musts to adjust the alcoholic strength of wine

Climate change is having an ever-increasing impact on the physico-chemical composition of grapes, with ever-lower acidity and higher sugar levels.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Identification of cis-2-methyl-4-propyl-1,3-oxathiane as a new volatile sulfur compound (VSC) in wine

Despite their trace concentrations, volatile sulfur compounds (VSCs) are an important category of flavour-active compounds that significantly contribute to desirable or undesirable aromas of many foods and beverages. In wines, VSCs in the form of polyfunctional thiols, notably 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate (3-SHA), and 4-sulfanyl-4-methyl-pentan-2-one (4-MSP), possess extremely low olfactory thresholds (≈ ng/L) and pleasant “tropical aroma” notes. They have received much attention with respect to their sensory contributions, quantitative occurrences, biogenesis, and thiol management through viticulture and winemaking. However, the fate of these potent volatiles are still not fully understood.