GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Predatory Arthropods associated with potential locally-adapted native insectary plants for Australian vineyards

Predatory Arthropods associated with potential locally-adapted native insectary plants for Australian vineyards

Abstract

Context and purpose of the study – Three locally-adapted native plants were evaluated to determine their capacity to provide insectary benefits to predatory arthropods in association with vineyards, and thereby to enhance biological control of insect pests. Native plants are preferred as supplementary flora, as they are naturally adapted to Australia’s climatic conditions.

Materials and methods – Stands of mature Bursaria spinosa, Leptospermum continentaleand Rytidosperma ssp. located adjacent to or in the mid-rows of Adelaide Hills, Barossa Valley and Eden Valley vineyards were sampled for arthropods in 2013/14. Vitis viniferawas also sampled.

Results – Twenty seven thousand and ninety-one individual invertebrate specimens were collected, comprising 20 orders and 287 morphospecies. Eight thousand, eight hundred and eighty predators, 6,790 herbivores and 11,421 other specimens were collected. Predatory arthropods dominated the diversity of morphospecies present on each plant. Out of a total of 98 predatory morphospecies, 67 were found on B. spinosa, 63 on L. continentale, 56 on V. vinifera and 38 in association with Rytidosperma ssp. The difference between predatory and herbivore morphospecies was highest on Rytidosperma ssp. (2:1 predators: herbivores), followed by L. continentale, V. vinifera and B. spinosa. The richness of predator morphospecies across all plant types was nearly double the number found in association with grapevines. It may be possible to increase the functional diversity of predatory arthropods by more than 3x when either B. spinosa or L. continentale is present versus grapevines only, and increase the net number of predator morphospecies by around 27% when Rytidosperma ssp. are planted in combination with the grapevines. The selected plants provide a suitable habitat to support diverse and functional populations of predatory arthropods. The opportunity to plant selected native insectary species could help wine grape growers save time and resources by producing fruit with lower pest incidence, while enhancing biodiversity of their vineyards.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

M. J. RETALLACK12, L. J. THOMSON3, M. A. KELLER2

1* Retallack Viticulture Pty Ltd, Crafers West, South Australia 5152, Australia
2 School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia 5064, Australia 
3 School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia

Contact the author

Keywords

Bursaria spinosa, Leptospermum continentale,insectary, Rytidosperma ssp., predatory arthropods, vineyards

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Come proteggere un territorio viticolo: il punto di vista del giurista

La valanga di fango che si è abbattuta nel Salemitano e nell’Avellinese, provocando decine di vittime, è stata causata in larga misura dalle insufficienti opere idrauliche e dalla manca­ta manutenzione di antiquati canali idrici.

AOC valorization of terroir nuances at plot scale in Burgundy

In the highly competitive global wine market, Burgundy has a long-established reputation to maintain. The vine and wine sector in Burgundy is based on a five-level ranking of AOC (Appellation d’Origine Contrôlée) wines and of the plots where the grapes are grown.

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Environment features and management operations on shoot and leaves modify the canopy during the vegetative season, changing the grapevine microclimate and the ratio between photo synthetic sources (the canopy) and productive sinks (the grapes).

Copper contamination in vineyard soils of Bordeaux: spatial risk assessment for the replanting of vines and crops

Copper (Cu) is widely and historically used in viticulture as a fungicide against mildew. Cu has a strong affinity for soil organic matter and accumulates in topsoil horizons. Thus, Cu may negatively affect soil organisms and plants, consequently reducing soil fertility and productivity. The Bordeaux vineyards have the largest vineyard surfaces (26%) within French controlled appellation and a great proportion of French wine production (around 5 million hl per year). Considering the local context of vineyard surfaces decreasing (vine uprooting) and possible new crop plantation, the issue of Cu potential toxicity rises. Therefore, the aims of this work are firstly to evaluate the Cu contamination in vineyard soils of Bordeaux, secondly to produce a risk assessment map for new vine or crop plantation. We used soil analyses from several local studies to build a database with 4496 soil horizon samples. The database was enhanced by means of pedotransfer functions in order to estimate the bioaccessible (EDTA-extractable) Cu in soils of samples without measurements. From this database, 1797 georeferenced samples with CuEDTA concentrations in the topsoil (0-50 cm depth) were used for kriging interpolation in order to produce the spatial distribution map of CuEDTA in vineyard soils. Then, the spatial distribution of Cu was crossed with vine uprooting surfaces and municipality boundaries. CuEDTAconcentrations ranged from 0.52 to 459 mg/kg and showed clear anomalies. Our results from spatial analysis showed that almost 50% of vineyard soil surfaces have CuEDTA concentrations higher than 30 mg/kg (moderate risk for new plantation) and 20% with concentrations higher than 50 mg/kg (high risk for new plantation). A decision-support map based on municipalities was realised to provide a simple tool to stakeholders concerned by land use management.