GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Essential oil vapor triggers resistance pathways in Vitis vinifera and blocks plasmopora viticola infection

Essential oil vapor triggers resistance pathways in Vitis vinifera and blocks plasmopora viticola infection

Abstract

The amount of synthetic pesticides applied in viticulture is relatively high compared to other agricultural crops, due to the high sensitivity of grapevine to diseases such as downy mildew (Plasmopora viticola). Alternatives to reduce fungicides are utterly needed to promote a sustainable vineyard-ecosystems and meet consumer acceptance.
Essential oils (EOs) are amongst the most promising natural plant protection agents and have shown their antifungal properties previously. However, the efficiency of EOs depends highly on timing and application technique. Additionally, the molecular interactions of host, pathogen and EO, which underlie the efficiency of EOs, are not understood. The presented study aimed to a) evaluate whether a continuous fumigation of EO can control downy mildew and b) decipher molecular mechanisms triggered in host and pathogen by EO. A custom made climatic chamber was constructed, which enabled a continuous fumigation of vines with different EOs during long term experiments.
Several experiments were carried out with vine cuttings infected with Plasmopora viticola and subsequently exposed to continuous fumigation of different EOs with different concentrations and application times (24 h to 10 d). Experiments were stopped when infection symptoms were clearly present on the control. Physiological parameters (photosynthesis, growth rate) were recorded and leaves were sampled at different time points for subsequent RNA extraction.
The post-infection oregano oil vapor treatment during 24h was sufficient to reduce downy mildew development to 95%. Leaf RNA sampled after 24 hours and 10 days of EO treatment was used for RNA-seq analysis. Sequenced reads were mapped onto the Vitis vinifera and Plasmopora viticola genomes. Less than 1% of reads could be mapped onto the Plasmopora genome from treated samples, whereas up to 30 % reads mapped from the controls, thereby confirming visual observation of P. viticola absence under treatment. An average of 80 % reads could be mapped onto the V. vinifera genome for differential expression analysis, which yielded 4800 modulated transcripts. Grapevine genes triggered by EO treatment were mainly linked to plant biotic stress response and plant-pathogen interactions. Key genes controlling ethylene synthesis, phenylpropanoids and flavonoid synthesis were also highly activated by EO. We report here for the first time the effects of EO treatments on the control of a grapevine pathogen, concomitantly with the molecular description of EO-host-pathogen interactions. These results strongly support the hypothesis that the antifungal efficiency of EO is indirect and mainly due to switching on resistance pathways of the host plants. These results are of major importance for the production and research on biopesticides, plant stimulation products as well as for resistance breeding strategies.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Markus RIENTH1*, Sana GHAFFARI1, Marylin CLÉROUX1, Arnaud PERNET1, Julien CROVADORE3, Eric REMOLIF2 Jean-Philipp BURDET1, Francois LEFORT3

1 Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, route de Duillier 60, 1260 Nyon, Switzerland
2 Agroscope, route de Duillier 50, 1260 Nyon, Switzerland
3 HEPIA, HES-SO University of Applied Sciences and Arts Western Switzerland, Jussy, Switzerland

Contact the author

Keywords

plant defense, essential oil, Plasmopara viticola, grapevine

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Terroirs and legal protection

Le concept AOC permet, par une délimitation précise, la mise en valeur de terroirs particulièrement adaptés à la viticulture. Seuls les terroirs ainsi identifiés peuvent produire des vins portant le nom de l’AOC. Le nom de cette AOC ne peut être utilisé que pour des vins issus de terroirs compris dans l’aire d’appellation, sous peine de sanctions pénales. La délimitation ainsi opérée participe à la protection du nom de l’AOC. A l’inverse, le terroir délimité n’est pas protégé.

Approche méthodologique concernant une caractérisation sensorielle de vins rouges de l’Anjou

Face à une concurrence de plus en plus rude entre pays producteurs, le vignoble de l’Anjou, déjà riche par sa diversité, souhaite renforcer sa logique de vins d’ A.O.C., notamment au travers de ses vins rouges.

Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Environmental awareness is globally rising among scientific community, politicians and general public. Biodiversity conservation is becoming a concern for farmers

Analyse climatique à l’échelle des Coteaux du Layon

Les études d’impact du climat sur la vigne nécessite de descendre à des échelles très fines car les facteurs climatiques sont tributaires de la topographie, la végétation, les expositions … Dans le cadre du programme ANR-JC Terviclim, 22 capteurs ont été installés dans les vignobles des Coteaux du Layon afin de caractériser le climat particulier de ces terroirs. L’analyse des températures montre de fortes disparités entre les data loggers et pourtant situés parfois sur les mêmes parcelles ou sur des parcelles voisines. Les indices bioclimatiques tels les degrés jours sont également contrastés suivant la situation des capteurs sur les coteaux.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.