GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Essential oil vapor triggers resistance pathways in Vitis vinifera and blocks plasmopora viticola infection

Essential oil vapor triggers resistance pathways in Vitis vinifera and blocks plasmopora viticola infection

Abstract

The amount of synthetic pesticides applied in viticulture is relatively high compared to other agricultural crops, due to the high sensitivity of grapevine to diseases such as downy mildew (Plasmopora viticola). Alternatives to reduce fungicides are utterly needed to promote a sustainable vineyard-ecosystems and meet consumer acceptance.
Essential oils (EOs) are amongst the most promising natural plant protection agents and have shown their antifungal properties previously. However, the efficiency of EOs depends highly on timing and application technique. Additionally, the molecular interactions of host, pathogen and EO, which underlie the efficiency of EOs, are not understood. The presented study aimed to a) evaluate whether a continuous fumigation of EO can control downy mildew and b) decipher molecular mechanisms triggered in host and pathogen by EO. A custom made climatic chamber was constructed, which enabled a continuous fumigation of vines with different EOs during long term experiments.
Several experiments were carried out with vine cuttings infected with Plasmopora viticola and subsequently exposed to continuous fumigation of different EOs with different concentrations and application times (24 h to 10 d). Experiments were stopped when infection symptoms were clearly present on the control. Physiological parameters (photosynthesis, growth rate) were recorded and leaves were sampled at different time points for subsequent RNA extraction.
The post-infection oregano oil vapor treatment during 24h was sufficient to reduce downy mildew development to 95%. Leaf RNA sampled after 24 hours and 10 days of EO treatment was used for RNA-seq analysis. Sequenced reads were mapped onto the Vitis vinifera and Plasmopora viticola genomes. Less than 1% of reads could be mapped onto the Plasmopora genome from treated samples, whereas up to 30 % reads mapped from the controls, thereby confirming visual observation of P. viticola absence under treatment. An average of 80 % reads could be mapped onto the V. vinifera genome for differential expression analysis, which yielded 4800 modulated transcripts. Grapevine genes triggered by EO treatment were mainly linked to plant biotic stress response and plant-pathogen interactions. Key genes controlling ethylene synthesis, phenylpropanoids and flavonoid synthesis were also highly activated by EO. We report here for the first time the effects of EO treatments on the control of a grapevine pathogen, concomitantly with the molecular description of EO-host-pathogen interactions. These results strongly support the hypothesis that the antifungal efficiency of EO is indirect and mainly due to switching on resistance pathways of the host plants. These results are of major importance for the production and research on biopesticides, plant stimulation products as well as for resistance breeding strategies.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Markus RIENTH1*, Sana GHAFFARI1, Marylin CLÉROUX1, Arnaud PERNET1, Julien CROVADORE3, Eric REMOLIF2 Jean-Philipp BURDET1, Francois LEFORT3

1 Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, route de Duillier 60, 1260 Nyon, Switzerland
2 Agroscope, route de Duillier 50, 1260 Nyon, Switzerland
3 HEPIA, HES-SO University of Applied Sciences and Arts Western Switzerland, Jussy, Switzerland

Contact the author

Keywords

plant defense, essential oil, Plasmopara viticola, grapevine

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Role of PH and its management during vinification on the extraction during maceration and on the evolution during ageing of the phenolic compounda of red wine

Climatic changes cause significant variations in the composition of grapes. for red grapes, a mismatch between phenolic and technological ripening is often observed. There is also often a marked increase in pH and a reduction in fixed acids, which affect the stability and evolution of the wine during ageing. These experiments will provide more information on the role of pH during the winemaking of red wines on the extraction and evolution of phenolic compounds.

Does wine expertise influence semantic categorization of wine odors?

Aromatic characterization is a key issue to enhance wines knowledge. While several studies argue the importance of wine expertise in the ability of performing odor-related sensory tasks, there is still little attention paid to the influence of expertise on the semantic representation of wine odors.

Phenolic profile of fungus-resistant varieties (PIWIs) for red wine production

Context and Purpose of the Study. PIWI grape varieties (Pilzwiderstandsfähig, fungus-resistant) offer innovative solutions for sustainable viticulture by addressing environmental challenges faced by traditional Vitis vinifera.

From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

Currently, to consistently ensure the maintenance of a wine-style while benefiting from the utmost rigor made possible by the winemaking process, the composition of the wine blend is made using sensory control. This is performed after the wine is made with no real possibility of deterministic intervention.

Moving beyond visible flower counting: RGB image-based flower number and yield prediction in grapevine

Accurate yield estimation is crucial for optimizing vineyard management and logistical organization. Traditional methods relying on manual and destructive flower or berry counts are labor-intensive and unsuitable for large-scale applications.