GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The effects of reducing herbicides in New Zealand vineyards

The effects of reducing herbicides in New Zealand vineyards

Abstract

Context and purpose of the study – Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Material and methods – This trial was conducted in the 2016-17, 2017-18 and 2018-19 seasons in three Merlot and three Sauvignon blanc vineyards in New Zealand. The trial was a split plot, with half the vineyard receiving multiple sprays (the industry standard). The other half received a single spray around budburst, and any subsequent undervine weeding was done using nonchemical methods (mowing or cultivation). In each vineyard half, five sampling locations were established for vine, fruit, and undervine measurements. Vines were assessed for canopy gaps by image analysis, yield, and rot severity. Fruit was sampled during ripening and at harvest to assess differences in chemical composition. The undervine area was surveyed at budburst, flowering, veraison, and harvest to assess differences in bare area and presence/abundance of various plant species.

Results – Reducing herbicide had a dramatic effect on the percent bare area under vines, as well as the species of undervine vegetation from flowering onwards. In most vineyards, canopy growth was similar for both the control (C) and reduced herbicide (RH) treatments, though a few differences were found, generally with the RH treatment having more gaps. A few differences were found in midday water potential, with the RH treatment generally having more negative SWP. Despite differences in canopy gaps and SWP, there were few effects on berry size or soluble solids. There were few other fruit compositional differences, though the RH fruit tended to have lower yeast assimilable nitrogen (YAN) than the C fruit. Yield was generally not affected by reducing herbicide, and rot severity tended to be similar between treatments, indicating no negative effects on fruit quantity or health from allowing more vegetation to become established under vines. These data show that herbicide use can be reduced by 50-75% with little negative effect on grapevines or their fruit. It is anticipated that adopting this technique will reduce herbicide residues in/on fruit and slow or stop the spread of herbicide resistant weeds.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Tingting ZHANG1, Allison HAYWOOD2, Mark KRASNOW2*

1 Thoughtful Viticulture, Napier, Hawke’s Bay, New Zealand
2 Thoughtful Viticulture, PO Box 312, Blenheim, 7240, New Zealand

Contact the author

Keywords

herbicide, resistance, grapevine, weeds, sustainability

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.

Detection of spider mite using artificial intelligence in digital viticulture

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions.