GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The effects of reducing herbicides in New Zealand vineyards

The effects of reducing herbicides in New Zealand vineyards

Abstract

Context and purpose of the study – Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Material and methods – This trial was conducted in the 2016-17, 2017-18 and 2018-19 seasons in three Merlot and three Sauvignon blanc vineyards in New Zealand. The trial was a split plot, with half the vineyard receiving multiple sprays (the industry standard). The other half received a single spray around budburst, and any subsequent undervine weeding was done using nonchemical methods (mowing or cultivation). In each vineyard half, five sampling locations were established for vine, fruit, and undervine measurements. Vines were assessed for canopy gaps by image analysis, yield, and rot severity. Fruit was sampled during ripening and at harvest to assess differences in chemical composition. The undervine area was surveyed at budburst, flowering, veraison, and harvest to assess differences in bare area and presence/abundance of various plant species.

Results – Reducing herbicide had a dramatic effect on the percent bare area under vines, as well as the species of undervine vegetation from flowering onwards. In most vineyards, canopy growth was similar for both the control (C) and reduced herbicide (RH) treatments, though a few differences were found, generally with the RH treatment having more gaps. A few differences were found in midday water potential, with the RH treatment generally having more negative SWP. Despite differences in canopy gaps and SWP, there were few effects on berry size or soluble solids. There were few other fruit compositional differences, though the RH fruit tended to have lower yeast assimilable nitrogen (YAN) than the C fruit. Yield was generally not affected by reducing herbicide, and rot severity tended to be similar between treatments, indicating no negative effects on fruit quantity or health from allowing more vegetation to become established under vines. These data show that herbicide use can be reduced by 50-75% with little negative effect on grapevines or their fruit. It is anticipated that adopting this technique will reduce herbicide residues in/on fruit and slow or stop the spread of herbicide resistant weeds.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Tingting ZHANG1, Allison HAYWOOD2, Mark KRASNOW2*

1 Thoughtful Viticulture, Napier, Hawke’s Bay, New Zealand
2 Thoughtful Viticulture, PO Box 312, Blenheim, 7240, New Zealand

Contact the author

Keywords

herbicide, resistance, grapevine, weeds, sustainability

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of soil management and vine water regime on leaf gas exchange, berry composition and quality of Chasselas wines in Switzerland

A soil management and vine irrigation trial was carried out for 4 consecutive years from 2020 to 2023 at agroscope’s experimental vineyard in leytron (Valais, Switzerland) with the Chasselas grape variety (clone 14-33/4, grafted on 5bb). Two types of soil maintenance (bare soil with chemical weeding and sown grass) coupled with two water regimes (with and without drip irrigation from flowering to veraison) were compared in a randomized design with four replicates of 10 vines each.

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Novel table grape varieties as “ready-to-eat” products

Consumers are increasingly requesting ready-to-eat products, which are time-saving and convenient. Offering ready-to-eat fruits and vegetables represents a quick and easy way for any consumer to add healthy products to their diet. In this study, we evaluated the aptitude of several table grape varieties to be included in the processing and packaging lines of ready-to-eat products. The following work was based on the characterization of genetic materials and varietal innovation.

Soil survey and continuous classification for terroir delineation in the “Colli Orientali del Friuli” wine production area

The combination of a non-parametric dissimilarity index with auger boring recordings was tested in a project of soil suitability evaluation for quality wine production in a 2000-ha hill slope portion of the “Colli Orientali del Friuli” AOC district (Italy).