GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The effects of reducing herbicides in New Zealand vineyards

The effects of reducing herbicides in New Zealand vineyards

Abstract

Context and purpose of the study – Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Material and methods – This trial was conducted in the 2016-17, 2017-18 and 2018-19 seasons in three Merlot and three Sauvignon blanc vineyards in New Zealand. The trial was a split plot, with half the vineyard receiving multiple sprays (the industry standard). The other half received a single spray around budburst, and any subsequent undervine weeding was done using nonchemical methods (mowing or cultivation). In each vineyard half, five sampling locations were established for vine, fruit, and undervine measurements. Vines were assessed for canopy gaps by image analysis, yield, and rot severity. Fruit was sampled during ripening and at harvest to assess differences in chemical composition. The undervine area was surveyed at budburst, flowering, veraison, and harvest to assess differences in bare area and presence/abundance of various plant species.

Results – Reducing herbicide had a dramatic effect on the percent bare area under vines, as well as the species of undervine vegetation from flowering onwards. In most vineyards, canopy growth was similar for both the control (C) and reduced herbicide (RH) treatments, though a few differences were found, generally with the RH treatment having more gaps. A few differences were found in midday water potential, with the RH treatment generally having more negative SWP. Despite differences in canopy gaps and SWP, there were few effects on berry size or soluble solids. There were few other fruit compositional differences, though the RH fruit tended to have lower yeast assimilable nitrogen (YAN) than the C fruit. Yield was generally not affected by reducing herbicide, and rot severity tended to be similar between treatments, indicating no negative effects on fruit quantity or health from allowing more vegetation to become established under vines. These data show that herbicide use can be reduced by 50-75% with little negative effect on grapevines or their fruit. It is anticipated that adopting this technique will reduce herbicide residues in/on fruit and slow or stop the spread of herbicide resistant weeds.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Tingting ZHANG1, Allison HAYWOOD2, Mark KRASNOW2*

1 Thoughtful Viticulture, Napier, Hawke’s Bay, New Zealand
2 Thoughtful Viticulture, PO Box 312, Blenheim, 7240, New Zealand

Contact the author

Keywords

herbicide, resistance, grapevine, weeds, sustainability

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

“Terroir” studies in the Côtes du Rhône controlled appellation: from zoning to application

This work gives a summary of the most important programmes about viticultural « terroirs », developed on the « Côtes du Rhône » controlled appellation area for about twenty years.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.

Artificial intelligence-driven classification method of grapevine phenology using conventional RGB imaging

The phenological stage of the grapevine (Vitis vinifera L.) represents a fundamental element in vineyard management, since it determines key practices such as fertilization, irrigation, phytosanitary interventions and optimal harvest time (Mullins et al., 1992).

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

Characterization and biological effects of extracts from winery by-products

Pomace, stem, grapevine leaves, and vine shoots arise as so called winery by-products during the wine production process.