GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing bunch architecture for grapevine yield forecasting by image analysis

Assessing bunch architecture for grapevine yield forecasting by image analysis

Abstract

Context and purpose of the study – It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages. The accuracy of the method for predicting bunch weight at different phenological stages was assessed for seven different varieties.

Material and methods – During the 2017-18 growing season in the Coombe Vineyard at the Waite Campus of the University of Adelaide seven different varieties were chosen for this study: Semillon, Grenache, Shiraz, Merlot, Sauvignon Blanc, Tempranillo and Cabernet Franc. After fruitset, 30 vines per variety were selected and two shoots were flagged on each vine. Images of bunches were taken five times from EL stage 30-31 to EL stage 37-38 using a smartphone. Bunch volumes were estimated from images. At harvest bunches were collected, weighed and imaged in the laboratory to compare with field images.

Results – This new approach using a smartphone to forecast the yield showed promising results. Accurate weight forecast models could be obtained by taking bunch images at veraison (R2 ranging from 0.71 to 0.84). As the bunch architecture of different varieties can vary further studies are required to improve the accuracy of this method. The tools used for this study are inexpensive, in common use, and do not need a high level of expertise to use them, furthermore, the labour required to obtain data, is not time-consuming.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Marco ZITO*1, Massimiliano COCCO2, Roberta DE BEI3, Cassandra COLLINS3

1 Istituto di Scienze della Vita, Scuola Superiore Sant’Anna, Pisa, Italy 56127
2 Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy 07100
3 School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, PMB I, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

bunch architecture, yield prediction, image analysis, non-destructive method

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Wine industry, digital transformation, and sustainability: a systematic literature 

This paper aims to (i) identify the state of the art regarding digital transformation in the transition to sustainability in the wine industry, (ii) analyze the adoption of digital technologies at different stages of the winemaking process and their contribution to the triple bottom line of sustainability, and (iii) present a research agenda that facilitates the development of the field, providing contributions to both literature and managerial practice.

Development of a GRASS-GIS application for the characterization of vineyards in the province of Trento

The physical factors that influence the grape ripening include elevation, slope, aspect, potential global radiation, sun hours and soil type of the vineyards.

Climate variability and its effects in the Penedès vineyard region (NE Spain)

This study present a detailed analysis of the rainfall and temperature changes in the Penedès region in the period 1995/ 96 – 2008/09, in comparison with the trends observed during the last 50 years, and its implications on phenology and yield.

Ultra high pressure liquid chromatography for stilbenes separation and their determination in Burgundy red wines

In this study for the first time, eight natural stilbenes (trans-resveratrol, trans-piceid, cis-piceid, trans-astringin, trans-piceatannol, (+)-trans-s-viniferin, pallidol and hopeaphenol) isolated and purified from Vitis vinifera, were simultaneously separated and analysed within 5 mn by ultra high pressure liquid chromatography coupled with photodiode array detection.

Phenolic characterization of four different red varieties with “Caíño” denomination cultivated in Northwestern Spain

In this work, these four red varieties were characterized in terms of phenolic composition. Thus, the anthocyanin accumulation and the extractability evolution during ripening were compared.