GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing bunch architecture for grapevine yield forecasting by image analysis

Assessing bunch architecture for grapevine yield forecasting by image analysis

Abstract

Context and purpose of the study – It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages. The accuracy of the method for predicting bunch weight at different phenological stages was assessed for seven different varieties.

Material and methods – During the 2017-18 growing season in the Coombe Vineyard at the Waite Campus of the University of Adelaide seven different varieties were chosen for this study: Semillon, Grenache, Shiraz, Merlot, Sauvignon Blanc, Tempranillo and Cabernet Franc. After fruitset, 30 vines per variety were selected and two shoots were flagged on each vine. Images of bunches were taken five times from EL stage 30-31 to EL stage 37-38 using a smartphone. Bunch volumes were estimated from images. At harvest bunches were collected, weighed and imaged in the laboratory to compare with field images.

Results – This new approach using a smartphone to forecast the yield showed promising results. Accurate weight forecast models could be obtained by taking bunch images at veraison (R2 ranging from 0.71 to 0.84). As the bunch architecture of different varieties can vary further studies are required to improve the accuracy of this method. The tools used for this study are inexpensive, in common use, and do not need a high level of expertise to use them, furthermore, the labour required to obtain data, is not time-consuming.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Marco ZITO*1, Massimiliano COCCO2, Roberta DE BEI3, Cassandra COLLINS3

1 Istituto di Scienze della Vita, Scuola Superiore Sant’Anna, Pisa, Italy 56127
2 Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy 07100
3 School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, PMB I, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

bunch architecture, yield prediction, image analysis, non-destructive method

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

WAC 2022: Abstracts are available on IVES Conference Series

In order to disseminate the scientific results presented during the WAC 2022 , the organizers have decided to share the abstracts of the oral communications and posters with Open Access on IVES Conference Series. The fifth edition of the International Conference...

Cultivation site effect on the quality of Moscato di Pantelleria

n 1997 and 1999, sixteen cultivation sites of cv. Muscat of Alexandria different for pedological conditions, altitude and exposition were selected through all Pantelleria isle. In 1997 in each site

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Grapevine yield estimation in a context of climate change: the GraY model

Grapevine yield is a key indicator to assess the impacts of climate change and the relevance of adaptation strategies in a vineyard landscape. At this scale, a yield model should use a number of parameters and input data in relation to the information available and be able to reproduce vineyard management decisions (e.g. soil and canopy management, irrigation). In this study, we used data from six experimental sites in Southern France (cv. Syrah) to calibrate a model of grapevine yield limited by water constraint (GraY). Each yield component (bud fertility, number of berries per bunch, berry weight) was calculated as a function of the soil water availability simulated by the WaLIS water balance model at critical phenological phases. The model was then evaluated in 10 grapegrowers’ plots, covering a diversity of biophysical and technical contexts (soil type, canopy size, irrigation, cover crop). We identified three critical periods for yield formation: after flowering on the previous year for the number of bunches and berries, around pre-veraison and post-veraison of the same year for mean berry weight. Yields were simulated with a model efficiency (EF) of 0.62 (NRMSE = 0.28). Bud fertility and number of berries per bunch were more accurately simulated (EF = 0.90 and 0.77, NRMSE = 0.06 and 0.10, respectively) than berry weight (EF = -0.31, NRMSE = 0.17). Model efficiency on the on-farm plots reached 0.71 (NRMSE = 0.37) simulating yields from 1 to 8 kg/plant. The GraY model is an original model estimating grapevine yield evolution on the basis of water availability under future climatic conditions.  It allows to evaluate the effects of various adaptation levers such as planting density, cover crop management, fruit/leaf ratio, shading and irrigation, in various production contexts.

La région viticole Cotnari (Roumanie) et ses vins dans l’ensemble des grandes régions viticoles européennes

The author presents the geographical position of Romania as a vine-growing European country and analyses its relief and climate as factors of paramount importance for vine-growing environments. The climatogram system and the oenoclimatic aptitude index are applied in an analysis of the climatic characteristics of the Romanian vine-growing reg ions.