GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Late leaf removal does not consistently delay ripeningin semillon in Australia

Late leaf removal does not consistently delay ripeningin semillon in Australia

Abstract

Context and purpose of the study ‐ An advancement of grapevine phenological development has been observed worldwide in the last two decades. In South Australia this phenomenon is even more accentuated since grapevine is often grown in a hot climate. The main consequences are earlier harvests at higher sugar levels which also result in more alcoholic wines. These are deemed undesirable for the Australian wine industry with consumer preferences shifting towards lower alcohol wines. Vineyard practices can be implemented to control and delay ripening. Amongst them, apical late leaf removal has been successfully applied in Europe to delay ripening by up to two weeks in Sangiovese, Aglianico and Riesling. In those studies, no negative effects were observed on grape colour, phenolics and on the carbohydrate storage capacity of the vines. To date, this technique has not been studied in Australia. In this study late leaf removal, apical to the bunch zone was applied to the variety Semillon for four seasons and compared to an untreated control.

Material and methods ‐ The study was carried out for four consecutive seasons starting in 2015 in the variety Semillon at the Waite Campus, University of Adelaide, Australia. Yield, yield components and berry chemistry (total soluble solids, titratable acidity, pH and total phenolics) were all assessed during the study.


Results
‐ Results showed that despite the removal of up to 30% of the vine’s canopy, the technique was effective in delaying ripening only in one of the four seasons. No differences were observed in yield components and berry and wine chemistry between the treated and untreated vines. These results suggest that the technique might not be a feasible strategy to delay ripening in Semillon grown in a hot climate in Australia.

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Roberta DE BEI (1), Xiaoyi WANG (1), Lukas PAPAGIANNIS (1), Massimiliano COCCO (1,3), Patrick O’BRIEN (1), Marco ZITO (1,4), Jingyun OUYANG (1), Sigfredo FUENTES (5), Matthew GILLIHAM (1,2), Steve TYERMAN (1,2) and Cassandra COLLINS (1)

(1) The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia. Australia
(2) ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia
(3) The University of Sassari, Department of Agriculture, Viale Italia 39, 07100, Sassari, Italy
(4) Istituto di Scienze della Vita, Sant’Anna School of Advanced Studies, Piazza dei Martiri della Libertà 33, 56127 Pisa, Italy
(5) The University of Melbourne, Faculty of Veterinary and Agricultural Sciences. Parkville, 3010. Victoria, Australia

Contact the author

Keywords

Leaf removal, delayed ripening, canopy management, leaf area, Semillon

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Recherche de relations entre terroir et caractéristiques sensorielles des eaux-de-vie de Cognac

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

The effect of soil and climate on the character of Sauvignon blanc wine

Un projet multidisciplinaire sur l’effet du sol et du climat sur la qualité du vin a débuté en Afrique du Sud il y a 5 ans. Des mesures sont effectuées sous culture sèche dans des vignes de Sauvignon Blanc dans six localités différentes, cinq dans le district de Stellenbosch et une à Durbanville.

Effects of early leaf removal on grape quality of Albariño vines subjected to different water regimes

The grape quality is affected by the canopy manipulation. Water management is a fundamental tool for controlling reproductive growth

Viticultural climate effect on the sensorial perception of wines. Methodological elements for a modelling at a world level

The objective of this study was to develop a methodology capable of modeling the effect of viticultural climate on wine sensory characteristics.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.