OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Characterization and application of silicon carbide (SiC) membranes to oenology

Characterization and application of silicon carbide (SiC) membranes to oenology

Abstract

After fermentations, the crude wine is a turbid medium not accepted by the consumer therefore, it needs to be filtered. Wine is increasingly filtered on microfiltration membranes but the low porosity of membranes currently used limits the efficiency of industrial installations. In fact, an increase in flow rates is expected in order to reduce the number of cleaning cycles and the size of the installations. 

SiC membranes have very interesting physico-chemical characteristics: low density, high porosity, high hydrophobicity, and good resistance to extreme pH and can become a solution to the problems encountered in the oenology sector. In order to apply these membranes, it’s essential to know their microstructure to understand their physico-chimic and hydrodynamic properties. To provide relevant information, different analytical techniques such as 2D, 3D imaging, porosity by mercury intrusion and measurement of contact angle were used. Poral phase analysis of membranes obtained has given concurrent results for all analytical techniques used and with the data provided by the membrane manufacturer. Compared to other ceramic membranes used in oenology, SiC membranes are anisotropic, have a higher porosity (> 40 %) and have a lesser tortuosity (1.20) giving them higher permeate flows. 

They also have a high hydrophobicity (water = 85.5°) explaining their better resistance to organic adsorption. Due the fact that wine is a complex and fouling colloidal matrix, filtration tests have been carried out on wine in order to identify the best filtration operating conditions. For a turbulent flow regime and a transmembrane pressure around 2 bars, a high permeate flux was obtained (450 l.h-1.m-2.bar-1) and this flux is permeat flux dependant. 

Finally, SiC membranes regeneration was studied: due to an organic fouling found after the filtration sessions, a sodium hydroxide clean-in-place combined with surfactants and hydrogen peroxide at high temperature allowed to recover the total permeability of the membranes.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Mathilda Trévisan, Philippe Moulin, Rémy Ghidossi, Klaus Schmalbuch

Unité de Recherche Oenologie – Institut des Sciences de la Vigne et du Vin 210 Chemin de Leysotte 33140 Villenave d’Ornon

 

Contact the author

Keywords

Silicon Carbide, Ceramic membranes, Characterization, Filtration 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Vitivoltaics: overview of the impacts on grapevine performance, wine quality, design features and stakeholder perceptions

This multidisciplinary study investigates “”Vitivoltaics,”” where photovoltaic (PV) panels are integrated into vineyard systems to generate renewable energy while providing partial shade to grapevines.

Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Monferace project is born from an idea of 12 winegrowers willing to create a new “old style” Grignolino wine and inspired byancient winemaking techniques of this variety (1). Monferace wine is produced with 100% Grignolino grapes after 40 months of ageing, of which 24 in wooden barrels of different volumes. Grignolino is an autochthonous Italian variety cultivated in Piedmont (north-west Italy), recently indicated as a “nephew” of the famous Nebbiolo (2) and is used to produce three different DOC wines. The Monferace Grignolino is cultivated in the geographical area identified in the Aleramic Monferrato, defined by the Po and Tanaro rivers, in the heart of Piedmont and the produced wine is characterized by a high content of tannins, marked when young, that evolve over the years. Its color is generally slight ruby red and garnet red with orange highlights with ageing.

The future of wine grape growing regions in europe

Recent warming trends in climatic patterns are now evident from observational studies. Nowadays, investigating the possible impacts of climate change on biological systems has a great importance in several fields of science.

A general phenological model for characterising grape vine flowering and véraison

The timing of phenology is critical if grape quality potential is to be optimized. Phenological process based models are used to predict phenology. In this study, three different models