OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Characterization and application of silicon carbide (SiC) membranes to oenology

Characterization and application of silicon carbide (SiC) membranes to oenology

Abstract

After fermentations, the crude wine is a turbid medium not accepted by the consumer therefore, it needs to be filtered. Wine is increasingly filtered on microfiltration membranes but the low porosity of membranes currently used limits the efficiency of industrial installations. In fact, an increase in flow rates is expected in order to reduce the number of cleaning cycles and the size of the installations. 

SiC membranes have very interesting physico-chemical characteristics: low density, high porosity, high hydrophobicity, and good resistance to extreme pH and can become a solution to the problems encountered in the oenology sector. In order to apply these membranes, it’s essential to know their microstructure to understand their physico-chimic and hydrodynamic properties. To provide relevant information, different analytical techniques such as 2D, 3D imaging, porosity by mercury intrusion and measurement of contact angle were used. Poral phase analysis of membranes obtained has given concurrent results for all analytical techniques used and with the data provided by the membrane manufacturer. Compared to other ceramic membranes used in oenology, SiC membranes are anisotropic, have a higher porosity (> 40 %) and have a lesser tortuosity (1.20) giving them higher permeate flows. 

They also have a high hydrophobicity (water = 85.5°) explaining their better resistance to organic adsorption. Due the fact that wine is a complex and fouling colloidal matrix, filtration tests have been carried out on wine in order to identify the best filtration operating conditions. For a turbulent flow regime and a transmembrane pressure around 2 bars, a high permeate flux was obtained (450 l.h-1.m-2.bar-1) and this flux is permeat flux dependant. 

Finally, SiC membranes regeneration was studied: due to an organic fouling found after the filtration sessions, a sodium hydroxide clean-in-place combined with surfactants and hydrogen peroxide at high temperature allowed to recover the total permeability of the membranes.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Mathilda Trévisan, Philippe Moulin, Rémy Ghidossi, Klaus Schmalbuch

Unité de Recherche Oenologie – Institut des Sciences de la Vigne et du Vin 210 Chemin de Leysotte 33140 Villenave d’Ornon

 

Contact the author

Keywords

Silicon Carbide, Ceramic membranes, Characterization, Filtration 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The role of climate/soil of different zones/terroirs on grape characteristics

According to the different concern of the ‘traditional’ and the ‘new’ wine-producing Countries, a variable importance is recognized to the climate/soil and to grapevine cultivars as factors affecting the wine quality. However, the viticultural experience can state that, within each area, climate and soil plays an incontestable role in affecting grape quality, and consequently wine quality, as well as the genetic characteristics of the cultivar.

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.

Biomass carbon and nitrogen input from cover crops in an irrigated vineyard in Okanagan Valley, Canada

The use of cover crops in vineyards has been encouraged by positive effects on wine grape yield and sensory attributes, and improved soil function. This study examined the efficacy of three alleyway and three undervine cover crop treatments in an organic vineyard in the semiarid Okanagan Valley, Canada in 2021.

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.