OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Characterization and application of silicon carbide (SiC) membranes to oenology

Characterization and application of silicon carbide (SiC) membranes to oenology

Abstract

After fermentations, the crude wine is a turbid medium not accepted by the consumer therefore, it needs to be filtered. Wine is increasingly filtered on microfiltration membranes but the low porosity of membranes currently used limits the efficiency of industrial installations. In fact, an increase in flow rates is expected in order to reduce the number of cleaning cycles and the size of the installations. 

SiC membranes have very interesting physico-chemical characteristics: low density, high porosity, high hydrophobicity, and good resistance to extreme pH and can become a solution to the problems encountered in the oenology sector. In order to apply these membranes, it’s essential to know their microstructure to understand their physico-chimic and hydrodynamic properties. To provide relevant information, different analytical techniques such as 2D, 3D imaging, porosity by mercury intrusion and measurement of contact angle were used. Poral phase analysis of membranes obtained has given concurrent results for all analytical techniques used and with the data provided by the membrane manufacturer. Compared to other ceramic membranes used in oenology, SiC membranes are anisotropic, have a higher porosity (> 40 %) and have a lesser tortuosity (1.20) giving them higher permeate flows. 

They also have a high hydrophobicity (water = 85.5°) explaining their better resistance to organic adsorption. Due the fact that wine is a complex and fouling colloidal matrix, filtration tests have been carried out on wine in order to identify the best filtration operating conditions. For a turbulent flow regime and a transmembrane pressure around 2 bars, a high permeate flux was obtained (450 l.h-1.m-2.bar-1) and this flux is permeat flux dependant. 

Finally, SiC membranes regeneration was studied: due to an organic fouling found after the filtration sessions, a sodium hydroxide clean-in-place combined with surfactants and hydrogen peroxide at high temperature allowed to recover the total permeability of the membranes.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Mathilda Trévisan, Philippe Moulin, Rémy Ghidossi, Klaus Schmalbuch

Unité de Recherche Oenologie – Institut des Sciences de la Vigne et du Vin 210 Chemin de Leysotte 33140 Villenave d’Ornon

 

Contact the author

Keywords

Silicon Carbide, Ceramic membranes, Characterization, Filtration 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

About long time and vine quality modelisation e pistemological appro ach to geographical viticulture

This work began as an intellectual game, in order to discuss the notion of wine quality in terms of terroir and territory spatial structure. Vine and wine quality has long been questioned by scientists. Each discipline approaching it with his own tools.

WINE CONSUMER TRADE-OFF BETWEEN ORGANOLEPTIC CHARACTERISTICS AND SUSTAINABLE CLAIMS. AN EXPERIMENT ON RED WINES FROM BORDEAUX REGION

In economics, the perception of wine quality is not limited to sensorial characteristics: an indication of the region of production significantly affects the perception of quality and consumers’ WTP ([1]; [2]). However, [3] or more recently [4] show that even if a wine has an organic label, the taste of wine remains the predominant criterion in consumer preferences. The contribution of our experiment is to evaluate the impact of responsible attributes (organic label, Non Added Sulfites, HVE certification) on the appreciation of several red wines on the market. More than 280 consumers participated to the present study and they perform 25 tastings divided into 5 different sessions. 20 different red wines from Bordeaux Area are tasted.

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Beyond classical statistics – data fusion coupled with pattern recognition

AIM: Patterns in data obtained from wine chemical and sensory evaluations are difficult to infer using classical statistics.