OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Characterization and application of silicon carbide (SiC) membranes to oenology

Characterization and application of silicon carbide (SiC) membranes to oenology

Abstract

After fermentations, the crude wine is a turbid medium not accepted by the consumer therefore, it needs to be filtered. Wine is increasingly filtered on microfiltration membranes but the low porosity of membranes currently used limits the efficiency of industrial installations. In fact, an increase in flow rates is expected in order to reduce the number of cleaning cycles and the size of the installations. 

SiC membranes have very interesting physico-chemical characteristics: low density, high porosity, high hydrophobicity, and good resistance to extreme pH and can become a solution to the problems encountered in the oenology sector. In order to apply these membranes, it’s essential to know their microstructure to understand their physico-chimic and hydrodynamic properties. To provide relevant information, different analytical techniques such as 2D, 3D imaging, porosity by mercury intrusion and measurement of contact angle were used. Poral phase analysis of membranes obtained has given concurrent results for all analytical techniques used and with the data provided by the membrane manufacturer. Compared to other ceramic membranes used in oenology, SiC membranes are anisotropic, have a higher porosity (> 40 %) and have a lesser tortuosity (1.20) giving them higher permeate flows. 

They also have a high hydrophobicity (water = 85.5°) explaining their better resistance to organic adsorption. Due the fact that wine is a complex and fouling colloidal matrix, filtration tests have been carried out on wine in order to identify the best filtration operating conditions. For a turbulent flow regime and a transmembrane pressure around 2 bars, a high permeate flux was obtained (450 l.h-1.m-2.bar-1) and this flux is permeat flux dependant. 

Finally, SiC membranes regeneration was studied: due to an organic fouling found after the filtration sessions, a sodium hydroxide clean-in-place combined with surfactants and hydrogen peroxide at high temperature allowed to recover the total permeability of the membranes.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Mathilda Trévisan, Philippe Moulin, Rémy Ghidossi, Klaus Schmalbuch

Unité de Recherche Oenologie – Institut des Sciences de la Vigne et du Vin 210 Chemin de Leysotte 33140 Villenave d’Ornon

 

Contact the author

Keywords

Silicon Carbide, Ceramic membranes, Characterization, Filtration 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Yeast diversity in Vitis labrusca l. Ecosystems

Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, little is known about the diversity of yeast communities present in non-vinifera Vitis ecosystems (i.e., grapes and spontaneously fermenting grape musts). Potentially scientific and/or enological valuable yeast strains from these non-vinifera Vitis ecosystems might never be isolated from V. vinifera L. Using a standard culture-dependent strategy, we studied the population of yeast species during initial stages of spontaneous fermentation of V. labrusca L. (Isabella) grape musts. Rare non-Saccharomyces yeast species were recognized in Isabella, including Candida azymoides, Pichia cecembensis, Candida californica, Candida bentonensis, Issatchenkia hanoiensis and Candida apicola.

The impact of ethyl esters, monoterpenes and volatile thiols to the perception of tropical fruit aromas in white wines

Many varietal white wines have aroma qualities that incorporate various tropical fruit aromas. These tropical fruit aromas are found to be considered positive qualities of the wines with consumers having positive emotional responses [1].

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.

The Albariño route in Uruguay: A clonal selection process to produce quality wines

In recent years, Uruguay has embraced the Albariño grape variety (Vitis vinifera L.) as one of the most promising for commercial growth. Originally cultivated in Galicia and northern Portugal, Albariño has risen to prominence in the global wine market, driving strong demand and significantly increasing grape prices [1].

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber.