terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Abstract

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

For this purpose, this equipment has been designed, built and prepared and has been validated with the measurement of red wines made from different grape varieties.

The equipment built has 2 mm quartz cuvettes for the measurement of the spectrum in the visible with a spectrophotometer and a sensor for the simultaneous measurement of dissolved oxygen with a luminescent measurement system, both measurements were carried out every 15 minutes during oxy-gen consumption. The tightness of the cuvettes during the process of measuring the kinetics of oxygen consumption was evaluated, as well as the reproducibility of the measurements of both parameters.

The results of this study show that the equipment designed and built is valid for monitoring the kinetics of oxygen consumption with the simultaneous measurement of the spectrum in the visible and dissolved oxygen. The tightness tests corroborated that all the cells used simultaneously are airtight, keeping their interior totally isolated from the exterior, showing a variability between cells of less than 10%. The results of the repeatability tests showed that the same wine measured simultaneously in the different cuvettes showed the same results both in the measurement of the consumption kinetics and in the measurement of the spectrum in the visible. The application of the system developed for the study of red wines allowed to know the characteristics of the consumption kinetics, obtaining that all red wines were initially able to take up the same amounts of oxygen (Omax), with values of 174 hPa. However, the wines made with Tempranillo grapes showed higher oxygen consumption (∆Omax_min), 115 hPa, and lower residual oxygen values (Omin), 59 hPa compared to than those made with the Garnacha grapes with 84 y 88 hPa of Omin and ∆Omax_min, respectively. One of the main advantages of this equipment is the ability to record the changes produced in the spectrum as the wine consumes oxygen, thus, an increase in red tones (450 and 580 nm) was observed in all the wines studied. It was found that the wines made with the Garnacha grapes underwent increases in absorbance between 400 and 460 nm and between 610 and 670 nm as they consumed oxygen, indicating an increase in the compounds responsible for the purple and yellow hues. On the other hand, wines made with the Tempranillo grapes, as they consumed oxygen, showed a decrease in purple hues.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marioli Alejandra, Carrasco-Quiroz ¹, Ignacio Nevares ², Ana Martinez-Gil ¹, Rubén Del Barrio-Galan ¹. Maria Asensio-Cuadrado ², Maria Del Alamo-Sanza ¹
1. Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain.
2. Dpt. Ingeniería Agrícola y Forestal, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain

Contact the author*

Keywords

Oxygen consumption, colour, wine, kinetics

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.