GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Abstract

Context and purpose of the study – Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Material and methods – The project is carried out in the Breede River Valley, Robertson, South Africa. Shiraz(clone SH 9C)/101-14 Mgt vines were planted during 2003 to a VSP trellis and four row orientations (NS, EW, NE-SW, NW-SE), replicated five times on a flat terroir with uniform clayey loam soil. Vines are spaced to a fixed distance of 1.8 x 2.7 m and pruned to two buds per spur. Since 2014, two water deficit levels are applied to each row orientation treatment, i.e. 75 % and 50 % of the control (reference), the latter receiving the full soil water adjustment per week (based on ET0 values and standard seasonal crop factors). Grapes are harvested at two ripeness levels, i.e. targeting 23 °B and 25 °B.

Results – Total relative evapotranspiration (ETo) fluctuated prominently according to Tmax, RHmin and especially Radiation changes. Photosynthetic activity of the 50 % irrigation treatment tended to be lower across row orientations. Photosynthetic activity of primary leaves decreased during the season. Stem water potential generally decreased with higher water deficit. Clear diurnal and nocturnal profiles of photosynthesis and water potential occurred. The collective physiological response of vines to various environmental factors (light, water availability, temperature, humidity) is complicated and requires understanding at whole plant level. Results on vegetative and reproductive growth characteristics as well as grape composition were variable, but trends are surfacing. Primary and secondary leaf area as well as total leaf area/vine seemed reduced by water deficit treatment. This led to a general increase in primary:secondary leaf area ratio for water deficit treatments. This ratio is an indication of the presence of young leaves in the canopy and is an important measure of canopy capacity to support the obtainment of full grape ripeness. Canopies of control vines thus seemed better suited for supporting complete grape ripening, confirming the importance of judicious vine management to increase the presence of younger leaves. Mass and volume parameters of berries and bunches as well as yields at the two ripeness levels were mostly reduced by water deficit treatments. Differences between the 100% and 75% irrigation treatments were not consistent. Yields generally showed large losses from the first to the second ripeness level.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

J.J. HUNTER, C.G. VOLSCHENK

ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, South Africa

Contact the author

Keywords

row orientation, water deficit, ripeness level, physiology, growth

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.
In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).

What drives Indications of Geographical Origin protection and governance mechanisms in the U.S. and European contexts? A contribution of the social sciences

There are fundamentally two different ways in which indications of geographical origin (igos) can be protected. The us approach favors the pre-existing trademark system through collective marks (cms), while the eu approach favors a maximalist approach via a sui generis system which promotes appellations of origin (aos). A consensus however emerges regarding the fundamental protection of origin against misleading, confusing and dilutive uses. Previous literature discusses these competing igo logics from historical, legal and international trade perspectives. In this paper, we depart from the field of social sciences, in particular from recent advancements in the well-established literature on proximities, in order to provide a reflection on the different logics underpinning the aos and cms systems.

HPLC-based quantification of elemental sulfur in grape juice

Elemental sulfur is commonly used in vineyards as a fungicide to prevent diseases and protect grapevines.1 The challenges of climate change are intensifying disease pressure, further increasing the reliance on sulfur use. Understanding the range of potential impacts of residual sulfur during the winemaking process is becoming increasingly important.