GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Abstract

Context and purpose of the study – Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Material and methods – The project is carried out in the Breede River Valley, Robertson, South Africa. Shiraz(clone SH 9C)/101-14 Mgt vines were planted during 2003 to a VSP trellis and four row orientations (NS, EW, NE-SW, NW-SE), replicated five times on a flat terroir with uniform clayey loam soil. Vines are spaced to a fixed distance of 1.8 x 2.7 m and pruned to two buds per spur. Since 2014, two water deficit levels are applied to each row orientation treatment, i.e. 75 % and 50 % of the control (reference), the latter receiving the full soil water adjustment per week (based on ET0 values and standard seasonal crop factors). Grapes are harvested at two ripeness levels, i.e. targeting 23 °B and 25 °B.

Results – Total relative evapotranspiration (ETo) fluctuated prominently according to Tmax, RHmin and especially Radiation changes. Photosynthetic activity of the 50 % irrigation treatment tended to be lower across row orientations. Photosynthetic activity of primary leaves decreased during the season. Stem water potential generally decreased with higher water deficit. Clear diurnal and nocturnal profiles of photosynthesis and water potential occurred. The collective physiological response of vines to various environmental factors (light, water availability, temperature, humidity) is complicated and requires understanding at whole plant level. Results on vegetative and reproductive growth characteristics as well as grape composition were variable, but trends are surfacing. Primary and secondary leaf area as well as total leaf area/vine seemed reduced by water deficit treatment. This led to a general increase in primary:secondary leaf area ratio for water deficit treatments. This ratio is an indication of the presence of young leaves in the canopy and is an important measure of canopy capacity to support the obtainment of full grape ripeness. Canopies of control vines thus seemed better suited for supporting complete grape ripening, confirming the importance of judicious vine management to increase the presence of younger leaves. Mass and volume parameters of berries and bunches as well as yields at the two ripeness levels were mostly reduced by water deficit treatments. Differences between the 100% and 75% irrigation treatments were not consistent. Yields generally showed large losses from the first to the second ripeness level.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

J.J. HUNTER, C.G. VOLSCHENK

ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, South Africa

Contact the author

Keywords

row orientation, water deficit, ripeness level, physiology, growth

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time.

Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Aims: Shiraz is the most widely cultivated grape variety in Australia, and is grown under a range of viticultural and climatic conditions. Given its importance to the Australian wine sector, a number of studies have been conducted in recent years which involved a comprehensive assessment of grape composition, in order to objectively predict wine quality and style outcomes.

Geological, mineralogical and geochemical influences on the cultivation of vines

Aims: The aims of this study are to determine the influences of the local geology, mineralogy and geochemistry of surroundings, substrate and soil on the cultivation of vines, these as an additional factor of specificity and locality in the production of wine and definition of terroir, as well as for the discrimination of local variance of substrate and soil properties for the strategic management of cultivation plots and/or the evaluation of new cultivation regions, necessary within a scope of global climate change.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.