GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Abstract

Context and purpose of the study – Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Material and methods – The project is carried out in the Breede River Valley, Robertson, South Africa. Shiraz(clone SH 9C)/101-14 Mgt vines were planted during 2003 to a VSP trellis and four row orientations (NS, EW, NE-SW, NW-SE), replicated five times on a flat terroir with uniform clayey loam soil. Vines are spaced to a fixed distance of 1.8 x 2.7 m and pruned to two buds per spur. Since 2014, two water deficit levels are applied to each row orientation treatment, i.e. 75 % and 50 % of the control (reference), the latter receiving the full soil water adjustment per week (based on ET0 values and standard seasonal crop factors). Grapes are harvested at two ripeness levels, i.e. targeting 23 °B and 25 °B.

Results – Total relative evapotranspiration (ETo) fluctuated prominently according to Tmax, RHmin and especially Radiation changes. Photosynthetic activity of the 50 % irrigation treatment tended to be lower across row orientations. Photosynthetic activity of primary leaves decreased during the season. Stem water potential generally decreased with higher water deficit. Clear diurnal and nocturnal profiles of photosynthesis and water potential occurred. The collective physiological response of vines to various environmental factors (light, water availability, temperature, humidity) is complicated and requires understanding at whole plant level. Results on vegetative and reproductive growth characteristics as well as grape composition were variable, but trends are surfacing. Primary and secondary leaf area as well as total leaf area/vine seemed reduced by water deficit treatment. This led to a general increase in primary:secondary leaf area ratio for water deficit treatments. This ratio is an indication of the presence of young leaves in the canopy and is an important measure of canopy capacity to support the obtainment of full grape ripeness. Canopies of control vines thus seemed better suited for supporting complete grape ripening, confirming the importance of judicious vine management to increase the presence of younger leaves. Mass and volume parameters of berries and bunches as well as yields at the two ripeness levels were mostly reduced by water deficit treatments. Differences between the 100% and 75% irrigation treatments were not consistent. Yields generally showed large losses from the first to the second ripeness level.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

J.J. HUNTER, C.G. VOLSCHENK

ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, South Africa

Contact the author

Keywords

row orientation, water deficit, ripeness level, physiology, growth

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Closing the carbon loop: evaluating the potential of grapevine-derived biochar as a soil conditioner in warm climate vineyards

Significant increases in anthropogenic carbon dioxide (CO2) emissions due to combustion of fossil fuels and intensive land management practices that release CO2 into the atmosphere have resulted in higher air temperatures due to the greenhouse effect.

Juvenile-to-adult vegetative phase transition in grapevine 

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge.

Viticultural zoning of the country of Mendoza, Argentina. Study of the first zone : department of Luján de Cuyo. Statement of the study year 2002

La région viticole de Mendoza est la principale zone vitivinicole d’Argentine qui se compose de 3 oasis (Nord, Valle de Uco, Sud). La première zone vitivinicole, située dans l’oasis Nord, est composée par les département de Luján de Cuyo et Maipu. C’est la zone de production la plus ancienne et la plus reconnue pour la qualité de sa production. Ce travail se porte plus particulièrement sur le département de Luján de Cuyo qui constitue le lieu traditionnel de production du Malbec argertin. Ce travail propose de caractériser les terroirs et de mettre en avant leurs typicités.

Integrated sustainability assessment in viticulture: An indicator-based approach applied to organic vineyards

Over the past two decades, sustainable vineyard management practices have become increasingly important as the wine industry is facing critical challenges, including climate change, biodiversity loss, and soil degradation.

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.