GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Abstract

Context and purpose of the study – Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Material and methods – The project is carried out in the Breede River Valley, Robertson, South Africa. Shiraz(clone SH 9C)/101-14 Mgt vines were planted during 2003 to a VSP trellis and four row orientations (NS, EW, NE-SW, NW-SE), replicated five times on a flat terroir with uniform clayey loam soil. Vines are spaced to a fixed distance of 1.8 x 2.7 m and pruned to two buds per spur. Since 2014, two water deficit levels are applied to each row orientation treatment, i.e. 75 % and 50 % of the control (reference), the latter receiving the full soil water adjustment per week (based on ET0 values and standard seasonal crop factors). Grapes are harvested at two ripeness levels, i.e. targeting 23 °B and 25 °B.

Results – Total relative evapotranspiration (ETo) fluctuated prominently according to Tmax, RHmin and especially Radiation changes. Photosynthetic activity of the 50 % irrigation treatment tended to be lower across row orientations. Photosynthetic activity of primary leaves decreased during the season. Stem water potential generally decreased with higher water deficit. Clear diurnal and nocturnal profiles of photosynthesis and water potential occurred. The collective physiological response of vines to various environmental factors (light, water availability, temperature, humidity) is complicated and requires understanding at whole plant level. Results on vegetative and reproductive growth characteristics as well as grape composition were variable, but trends are surfacing. Primary and secondary leaf area as well as total leaf area/vine seemed reduced by water deficit treatment. This led to a general increase in primary:secondary leaf area ratio for water deficit treatments. This ratio is an indication of the presence of young leaves in the canopy and is an important measure of canopy capacity to support the obtainment of full grape ripeness. Canopies of control vines thus seemed better suited for supporting complete grape ripening, confirming the importance of judicious vine management to increase the presence of younger leaves. Mass and volume parameters of berries and bunches as well as yields at the two ripeness levels were mostly reduced by water deficit treatments. Differences between the 100% and 75% irrigation treatments were not consistent. Yields generally showed large losses from the first to the second ripeness level.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

J.J. HUNTER, C.G. VOLSCHENK

ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, South Africa

Contact the author

Keywords

row orientation, water deficit, ripeness level, physiology, growth

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

A climatic classification of the world’s wine regions and winegrape variety concentration

In this video recording of the IVES science meeting 2024, German Puga (Wine Economics Research Centre, School of Economics and Public Policy, University of Adelaide, Adelaide, Australia) speaks about a climatic classification of the world’s wine regions and winegrape variety concentration. This presentation is based on an original article accessible for free on OENO One.

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible.

Influence of climatic conditions on grape composition of Tempranillo in La Mancha DO (Spain)

The aim of this work was to analyze the variability in grape composition of the Tempranillo cultivar related to climatic conditions, in La Mancha Designation of Origin. Grape composition (sugar content, total acidity, pH, malic acid, and total and extractable anthocyanins) recorded during ripening, were analysed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The relationships between grape parameters with climatic variables related to temperature and to water deficits, referring different periods between phenological events along the growing cycle, were evaluated using regression analysis. High variability in grape composition was observed in the period analysed. Total acidity varied between 3.7 and 7.3 gL-1 while malic acid varied between 1.2 and 4 gL-1. The extractable anthocyanins ranged between 526 and 972 mgL-1, and total anthocyanins ranged between 922 and 1388 mgL-1, being the lowest values recorded in the hottest year (2017). Total acidity decreased 0.77 gL-1 for an increase of 100 GDD, while malic acid decrease in 0.42 gL-1 for the same GDD increase, being the period between veraison and harvest the one that seemed to have higher influence on acidity. In addition, it was confirmed that increasing water deficits decreased acidity. Total and extractable anthocyanins increased in about 210 and 105 mgL-1, respectively, with an increase of 100 GDD from veraison to harvest, and the increase in water deficits favour the increase of anthocyanins, both total and extractable anthocyanins. Total and extractable anthocyanins concentration increased in 35 and 22 mgL-1 per an increase of 10 mm in the water deficit. These results can be of interest to understand the potential changes that grapes composition may suffer under future warmer climates.

Investigations into the effects of a commercial organic fertilizer and of quality compost on the soil and the vines

The influences of quality compost A+ and of a commercial organic fertilizer based on dry mash from bioethanol production, blackstrap molasses, vinasse, PNC (potato nitrogen concentrate) and CSL (corn steep liquor) on the humus content, on the mineral nitrogen content in the soil, in the must and in the vine leaves, on pruning wood

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.