terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Abstract

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification of the sensory balance and the development for example of cooked fruit aromas. These nuances are also associated with the “premature aging” phenomenon, mostly during bottle aging. In the context of this work, impact molecular markers [] were evaluated in Bordeaux red wines after 5 years of aging under controlled conditions. The main goal of this study was to examine the importance of the link between the must acidity at Numerous results shed light on the significant impact of the maturity level as well as the variety on the molecular markers after 5 years of aging. This gives us some valuable information in order to better understand the role of harvest date and the acidity level in the must on wine evolution during aging but also to better adapt Bordeaux terroirs and grape varieties to future changes.

1. Sophie Tempère, Stéphanie Pérès, Alejandro Fuentes Espinoza, Philippe Darriet, Eric Giraud-Heraud, et al.. Consumer preferences for different red wine styles and repeated exposure effects. Food Quality and Preference, 2019, 73, pp.110-116.⟨10.1016/j.foodqual.2018.12.009).

DOI:

Publication date: February 12, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Zoi Avramidou1,2, Margaux Cameleyre1,2, Alexandre Pons1,2,3, Axel Marchal1,2, Michael Jourdes1,2, Taku Saito1,4, Soizic Lacampagne1,2, Pascaline Redon1,2, Laurence Geny1,2, Pierre-Louis Tesseidre1,2, Philippe Darriet1,2, C.line Cholet1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, F-33170 Gradignan, France
3. Seguin Moreau Cooperage, ZI Merpins, F-16103 Cognac, France
4. Suntory

Contact the author*

Keywords

Climate Change, Premature aging, acidity, taste

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.