GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

Abstract

Contex and purpose of this study – The leaf area is of fundamental importance so that the plant can realize adequate levels of photosynthesis for the accumulation of reserves and to reach a suitable maturation of the berries. In this sense, the objective was to evaluate the effect of different lengths of the stalks from the first support wire, in the must and in the wine of ‘Cabernet Sauvignon’.

Material and methods – The study was carried out by the Nucleus of Study, Research and Extension in Enology (NEPE²), of the Bachelor’s Degree in Oenology of UNIPAMPA. The treatments were separated from the stalks at 60 cm (T1), 80 cm (T2), 100 cm (T3) and 120 cm (T4). The experiment was carried out in a vineyard located in the municipality of Dom Pedrito – RS, Brazil, during the 2015/16 crop, in ‘Cabernet Sauvignon’ grapevines at the age of 16, grafted on ‘SO4’ rootstocks and conducted in espalier. The experimental design was completely randomized blocks. The physicochemical analyzes of the must were Total Acidity – TA (g L-1), pH e, Reducing Sugars (g L-1). In the wine it was evaluated: Alcohol (% v/v), TA (g L-1), Volatile Acidity (g L-1), Glycerol (g L-1), Anthocyanin (g L-1), Color Intensity and Total Polyphenol Index (TPI).
The data were submitted to the Tukey averages comparison test at 5% probability.

Results – Treatment T3 (vegetative canopy height of 100 cm) had the highest TA value (3.1 g L-1). For the pH of the must, it decreased significantly as the canopy height increased. In wine, the alcohol content of the T4 treatment (120 cm) was the one with the highest value. In relation to the amount of anthocyanins, T1 treatment (60 cm) presented a higher amount of anthocyanins, T4 (120 cm), showed a color intensity, and a higher proportion of anthocyanins that give red tonality in the wine (520 nm) than the anthocyanins that give yellow tint in the wine (420 nm), thus the T4 (120 cm) was the treatment that showed the highest intensity of color, whereas the T3 (100 cm) was the one that presented less anthocyanins and color intensity. Preliminarily, it is concluded that maintaining the canopy of different sizes in the vegetative period has a significant influence on the quality of the must and wine of ‘Cabernet Sauvignon’ cultivated in the region of Dom Pedrito, RS, Brazil.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Pedro Paulo PARISOTO1, Jansen Moreira SILVEIRA1, Nadia Cristiane Alves VIANNA1, Alice Farias MAIA1, Marcos GABBARDO1, César Valmor ROMBALDI2, Juan SAAVEDRA DEL AGUILA1*

1 University Federal of Pampa (UNIPAMPA), Cep 96450-000, Dom Pedrito, Rio Grande do Sul (RS), Brazil
2 Federal University of Pelotas (UFPel), Pelotas, RS, Brazil

Contact the author

Keywords

Vitis vinifera L., carbohydrates, photosynthesis, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

Aim of the study was to investigate the metabolomic differences between Chilean Cabernet Sauvignon wines, divided according to their quality in two main groups: “Varietal” and “Premium”, and to point out metabolites tentative markers of their chemical signature and sensorial quality. Initially, 150 (50 x 3 biological replicates) experimental wines were produced by the same semi-industrial process, which covered 8 different Chilean valleys. The wine classification made by experts, divided the wines into two major groups (“Varietal” and “Premium”) and four subgroups (two for each major group). All the samples were analyzed according to a robust LC-MS based untargeted work-flow (Arapitsas et al 2018), and the proposed minimum reporting standards for chemical analysis of the Metabolomics Standards Initiative (Sumner et al 2007)

Above and below: soil moisture and soil temperature interact to alter grapevine water relations

The combined effect of soil moisture and soil temperature on grapevine physiology is gaining interest in the context of global warming.

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

Evolution of acetaldehyde concentration during wine alcoholic fermentation: online monitoring for production balances

During alcoholic fermentation, acetaldehyde is the carbonyl compound quantitatively the most produced by yeasts after ethanol. The dynamics of acetaldehyde production can be divided into 3 phases. Early formation of this compound is observed during the lag phase at the beginning of fermentation before any detectable growth [1].

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.