GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

Abstract

Context and purpose of the study – In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.

Material and methods – The trial was carried out in a vineyard located in Nea Agchialos, Central Greece. Muscat Hamburg vines were tagged and randomly assigned in pairs to a spray treatment with a specific inactivated yeast derivatives (IYT, LalVigne™ MATURE, with the patent pending application technology of Lallemand, 100% natural formulation) or unsprayed (C = control vines). The entire canopy of all IYT vines were sprayed at veraison with IYT solution. The treatment was repeated at the same concentration 10 days later. At harvest, yield parameters, bunch morphology, grape composition and wine analysis were recorded.

Results There was no effect of inactivated yeast treatment on yield, bunch weight, berry weight and bunch compactness, whereas relative skin mass was increased on IYT vines. At harvest, TSS, TA and pH were similar in both treatments while treated vines showed higher total anthocyanin and phenolics content, improving phenolic maturity of the berries. Finally, wine color quality was improved on IYT vines. Our results indicate that in the Mediterranean vineyard regions, often characterized by dry and hot vintages, specific inactivated yeast derivatives applications can be an easier alternative to other traditional management techniques (e.g. cluster thinning, early defoliation, girdling) for improving phenolic maturity in grapes.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Despoina PETOUMENOU1, Efstratios XYRAFIS2*, Ioannis DIMAKIS3 and F. BATTISTA4

1 Department of Agricultural Crop Production and Rural Environment. School of Agricultural Sciences, University of Thessaly, Fytoko str., 38446 Volos, Greece
2 Laboratory of Viticulture, Faculty of Crop Science, Agricultural University of Athens, 75 Iera Odos, GR-11855, Athens, Greece
3 Agriculrural Winemaking Cooperative of Nea Agchialos ‘Dimitra’, Nea Agchialos – Microthives, Greece
4 Lallemand Inc, Via Rossini 14/B, 37060 Castel D’Azzano (VR), Italia

Contact the author

Keywords

inactivated dry yeast, Muscat Hamburg, berry composition, phenolic maturity, wine quality

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Seasonal variations and climate interactions with phenolic extractability of Pinot noir across the whole winemaking process

Context and Purpose of the Study. A deeper understanding of the relationship between weather conditions and wine quality is essential for assessing the impact of climate change and developing effective adaptation strategies.

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.

Use of multispectral satellite for monitoring vine water status in mediterranean areas

The development of new generations of multispectral satellites such as Sentinel-2 opens possibilities as to vine water status assessment (Cohen et al., 2019). Based on a three years field campaign, a model of Stem Water Potential (SWP) estimation on vine using four satellite bands in Red, Red-Edge, NIR and SWIR domains was developed (Laroche-Pinel et al., 2021). The model relies on SWP field measures done using a pressure chamber (Scholander et al., 1965), which is a common, robust and precise method to assess vine water status (Acevedo-Opazo et al., 2008). The model was mainly developed from from SWP measures on Syrah N (Laroche Pinel E., 2021).

A large scale monitoring was organized in different vineyards in the Mediterranean region in 2021. 10 varieties amongst the most represented in this area were monitored (Cabernet sauvignon N, Chardonnay B, Cinsault N, Grenache N, Merlot N, Mourvèdre N, Sauvignon B, Syrah N, Vermentino B, Viognier B). The model was used to produce water status maps from Sentinel-2 images, starting from the beginning of June (fruit set) up to September (harvest). The average estimated SWP for each vine was compared to actual field SWP measures done by wine growers or technicians during usual monitoring of irrigation programs. The correlations between mean estimated SWP and mean measured SWP were at the same level than expected by the model. (Laroche Pinel, 2021) The general SWP kinetics were comparable. The estimated SWP would have led to same irrigation decisions concerning the date of first irrigation in comparison with measured SWP.

Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., Guillaume, S. (2008). Is it possible to assess the spatial variability of vine water status? OENO One, 42(4), 203.
Cohen, Y., Gogumalla, P., Bahat, I., Netzer, Y., Ben-Gal, A., Lenski, I., … Helman, D. (2019). Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision agriculture ’19, The Netherlands: Wageningen Academic Publishers, pp. 445–451.
Laroche-Pinel, E., Duthoit, S., Albughdadi, M., Costard, A. D., Rousseau, J., Chéret, V., & Clenet, H. (2021). Towards vine water status monitoring on a large scale using sentinel-2 images. remote sensing, 13(9), 1837.
Laroche-Pinel,E. (2021). Suivi du statut hydrique de la vigne par télédétection hyper et multispectrale. Thèse INP Toulouse, France.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., & Hammel, H.T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.

Rootstock selection moderates the effect of rising temperatures through drought tolerance and modulation of stomatal conductance

Climate change is increasing crop evapotranspiration and reducing water availability, especially in the Mediterranean area.

New markers for monitoring “fresh mushroom aroma” in wine: A dual approach using microbiological and chemical tools from the vineyard to winery–A synthesis of recent research advances

The ‘fresh mushroom off-flavour’ has been recognized by the wine industry as an emerging defect since the 2000s. For many years, this off-flavour was not specifically characterized and rather grouped under ‘earthy’ and ‘musty’ taints. However, it has become increasingly problematic due to its rising prevalence. In some vineyards, incidents of this off-flavour now occur as frequently as once every five years. This trend may be associated with climatic changes affecting regions that are more prone to warm and wet seasons.