GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

Abstract

Context and purpose of the study – In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.

Material and methods – The trial was carried out in a vineyard located in Nea Agchialos, Central Greece. Muscat Hamburg vines were tagged and randomly assigned in pairs to a spray treatment with a specific inactivated yeast derivatives (IYT, LalVigne™ MATURE, with the patent pending application technology of Lallemand, 100% natural formulation) or unsprayed (C = control vines). The entire canopy of all IYT vines were sprayed at veraison with IYT solution. The treatment was repeated at the same concentration 10 days later. At harvest, yield parameters, bunch morphology, grape composition and wine analysis were recorded.

Results There was no effect of inactivated yeast treatment on yield, bunch weight, berry weight and bunch compactness, whereas relative skin mass was increased on IYT vines. At harvest, TSS, TA and pH were similar in both treatments while treated vines showed higher total anthocyanin and phenolics content, improving phenolic maturity of the berries. Finally, wine color quality was improved on IYT vines. Our results indicate that in the Mediterranean vineyard regions, often characterized by dry and hot vintages, specific inactivated yeast derivatives applications can be an easier alternative to other traditional management techniques (e.g. cluster thinning, early defoliation, girdling) for improving phenolic maturity in grapes.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Despoina PETOUMENOU1, Efstratios XYRAFIS2*, Ioannis DIMAKIS3 and F. BATTISTA4

1 Department of Agricultural Crop Production and Rural Environment. School of Agricultural Sciences, University of Thessaly, Fytoko str., 38446 Volos, Greece
2 Laboratory of Viticulture, Faculty of Crop Science, Agricultural University of Athens, 75 Iera Odos, GR-11855, Athens, Greece
3 Agriculrural Winemaking Cooperative of Nea Agchialos ‘Dimitra’, Nea Agchialos – Microthives, Greece
4 Lallemand Inc, Via Rossini 14/B, 37060 Castel D’Azzano (VR), Italia

Contact the author

Keywords

inactivated dry yeast, Muscat Hamburg, berry composition, phenolic maturity, wine quality

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of the number of CPPU applications on growth, mineral composition and Bunch Stem Necrosis incidence in table grape clusters

The forchlorfenuron (CPPU) application is recommended in table-grape after fruit-set to boost berry sizing, albeit growers also apply CPPU during pre-flowering with controversial advantages. We examined the effect of single (BBCH 15) and double (BBCH 15 and 57) CPPU applications (2.25 mg/L a.s.) in a commercial vineyard. At each time, 75-100 bunches belonging to 6-9 vines were sprayed, and compared with unsprayed (CTRL). Leaf stomatal conductance (gs), cluster stem diameter and length were measured. At harvest, 25 berries/repetition were sampled for chemical composition, BSN incidence was counted (N° necrotic laterals/10 cm of stem) in 40 bunches/repetition. To test the role of air VPD on mineral composition, at BBCH 77, 50 CTRL clusters were bagged to induce a low VPD.

Rationalizing The Wine Nucleophilic Competition For Quinone Addition

loss and color browning which lead to wine unacceptance by consumers. These changes are mainly driven by the consumption of oxygen by polyphenols leading to the production of quinones which are oxidant compounds. Quinones can react with numerous nucleophilic compounds notably aromatic thiols, decreasing the aromatic bouquet of the wine.

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).