GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

Abstract

Context and purpose of the study – In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.

Material and methods – The trial was carried out in a vineyard located in Nea Agchialos, Central Greece. Muscat Hamburg vines were tagged and randomly assigned in pairs to a spray treatment with a specific inactivated yeast derivatives (IYT, LalVigne™ MATURE, with the patent pending application technology of Lallemand, 100% natural formulation) or unsprayed (C = control vines). The entire canopy of all IYT vines were sprayed at veraison with IYT solution. The treatment was repeated at the same concentration 10 days later. At harvest, yield parameters, bunch morphology, grape composition and wine analysis were recorded.

Results There was no effect of inactivated yeast treatment on yield, bunch weight, berry weight and bunch compactness, whereas relative skin mass was increased on IYT vines. At harvest, TSS, TA and pH were similar in both treatments while treated vines showed higher total anthocyanin and phenolics content, improving phenolic maturity of the berries. Finally, wine color quality was improved on IYT vines. Our results indicate that in the Mediterranean vineyard regions, often characterized by dry and hot vintages, specific inactivated yeast derivatives applications can be an easier alternative to other traditional management techniques (e.g. cluster thinning, early defoliation, girdling) for improving phenolic maturity in grapes.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Despoina PETOUMENOU1, Efstratios XYRAFIS2*, Ioannis DIMAKIS3 and F. BATTISTA4

1 Department of Agricultural Crop Production and Rural Environment. School of Agricultural Sciences, University of Thessaly, Fytoko str., 38446 Volos, Greece
2 Laboratory of Viticulture, Faculty of Crop Science, Agricultural University of Athens, 75 Iera Odos, GR-11855, Athens, Greece
3 Agriculrural Winemaking Cooperative of Nea Agchialos ‘Dimitra’, Nea Agchialos – Microthives, Greece
4 Lallemand Inc, Via Rossini 14/B, 37060 Castel D’Azzano (VR), Italia

Contact the author

Keywords

inactivated dry yeast, Muscat Hamburg, berry composition, phenolic maturity, wine quality

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Managing Grapevine Powdery Mildew with Ultraviolet-C Light in Washington State

Germicidal ultraviolet-C (UV-C) light has shown promising results for suppression of several plant-pathogenic microorganims, including Erysiphe necator, which attacks grapevine. In Washington State the majority of winegrape production is in a semi-arid steppe environment, with historically low powdery mildew disease pressure, making it a promising area to deploy UV-C as a disease management tool. Trials focusing on UVC application timing and frequency will assist in developing regionally-appropriate application recommendations for eastern Washington State.