GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

Abstract

Context and purpose of the study – In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.

Material and methods – The trial was carried out in a vineyard located in Nea Agchialos, Central Greece. Muscat Hamburg vines were tagged and randomly assigned in pairs to a spray treatment with a specific inactivated yeast derivatives (IYT, LalVigne™ MATURE, with the patent pending application technology of Lallemand, 100% natural formulation) or unsprayed (C = control vines). The entire canopy of all IYT vines were sprayed at veraison with IYT solution. The treatment was repeated at the same concentration 10 days later. At harvest, yield parameters, bunch morphology, grape composition and wine analysis were recorded.

Results There was no effect of inactivated yeast treatment on yield, bunch weight, berry weight and bunch compactness, whereas relative skin mass was increased on IYT vines. At harvest, TSS, TA and pH were similar in both treatments while treated vines showed higher total anthocyanin and phenolics content, improving phenolic maturity of the berries. Finally, wine color quality was improved on IYT vines. Our results indicate that in the Mediterranean vineyard regions, often characterized by dry and hot vintages, specific inactivated yeast derivatives applications can be an easier alternative to other traditional management techniques (e.g. cluster thinning, early defoliation, girdling) for improving phenolic maturity in grapes.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Despoina PETOUMENOU1, Efstratios XYRAFIS2*, Ioannis DIMAKIS3 and F. BATTISTA4

1 Department of Agricultural Crop Production and Rural Environment. School of Agricultural Sciences, University of Thessaly, Fytoko str., 38446 Volos, Greece
2 Laboratory of Viticulture, Faculty of Crop Science, Agricultural University of Athens, 75 Iera Odos, GR-11855, Athens, Greece
3 Agriculrural Winemaking Cooperative of Nea Agchialos ‘Dimitra’, Nea Agchialos – Microthives, Greece
4 Lallemand Inc, Via Rossini 14/B, 37060 Castel D’Azzano (VR), Italia

Contact the author

Keywords

inactivated dry yeast, Muscat Hamburg, berry composition, phenolic maturity, wine quality

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Spotted lanternfly, a new invasive insect in vineyards: is it a threat to grapevines?

The spotted lanternfly (SLF; Lycorma delicatula) is a phloem-feeding polyphagous insect invasive to the Eastern U.S.. Since its first detection in Pennsylvania (U.S.) in 2014, large infestations and economic damage (e.g., decreased yield, vine decline, greater pesticide use) have been reported in an increasing number of vineyards, threatening the sustainability and growth of the wine industry in infested regions. Our team has been investigating the impacts of SLF phloem-feeding on physiological processes, fruit production, juice, and wine composition of different grape cultivars, and also evaluated if the SLF can transmit important grapevine pathogens. In addition, we are working closely with stakeholders to better enumerate the economic damage caused by this pest. These findings will provide relevant information to grape and wine producers to help identify action thresholds and develop a more targeted integrated pest management program.

Exploring the potential of Hanseniaspora vineae for quality wines production

Traditionally, non-saccharomyces yeasts were deemed undesirable in winemaking, for this reason, it is a common practice to add sulphites to prevent their proliferation during the initial stages of vinification. However, the current research on yeast diversity has unveiled numerous non-saccharomyces strains possessing advantageous traits that enrich the sensory profile of wines. The genus hanseniaspora is often associated with wine fermentation and is also commonly found on grapes.

Aspects concernant les relations entre quelques composantes de la biomasse viticole, en fonction de l’offre des ressources écologiques

Ecological resources represent vegetation factors, or even production factors, in quantitative expression. These, used by plants, transformed and organized according to their genetic program, become the material components of biomass. Subsequently, the ecological resources can be used as synthetic indicators of the ecological supply, necessary for the analysis of favorability for the understanding of ecosystems.

Non-saccharomyces yeasts in the biocontrol of grape molds in vineyards to reduce the use of pesticides

The wide diffusion of organic cultivation of vineyards and the need to reduce the use of pesticides highlights the urgent need for alternative and sustainable methods of vine protection by pathogen molds.

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.