IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Abstract

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking. 
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines. In a competitive global winemaking market strategy, it is crucial to reduce or even eliminate the use of SO2 and to search for new healthier strategies. In the last decade, Yeast Derivatives (YDs) were proposed as a new strategy to control wine oxidation [3]. These products are obtained from yeasts by autolytic or hydrolytic processes and dried to obtain the commercial products. The aim of this work was to carry out a preliminary investigation of YDs with different composition on (i) their capacity to prevent oxidation of white wine in comparison with conventional treatment with SO2 and (ii) to evaluate their impact on wine quality.
For this study two YDs were used for all the experiments: a YDR naturally rich in reducing compounds including Glutathione and a YDL naturally rich in lipids. White wines vinified with no sulfite additions were supplemented with one of the YDs and submitted at oxidation:  8 mg/L of dissolved O2 respectively. A Pyroscience optical O2 sensor was used for the dissolved oxygen monitoring. Wines analyses were performed after the complete oxygen consumption: wine analysis (Foss), color (CIELab), glutathione (GSH, HPLC-fluo), ethanol (GC-MS), sensorial analysis. These results were compared with those obtained for wines with no antioxidant treatment and with SO2 addition. Results showed that yeast derivatives and SO2 permit to reduce the O2 consumption rate of 55 and 60% respectively than the untreated control without antioxidant. In comparison with the control wines, YDs have an impact on color but they allow the reduction of wine browning. 
In addition, wines treated with YD present a lower ethanal amount than the control and SO2 wines. The YD naturally rich in reducing compounds show better preservation of wine’s GSH content. Finally, during wine sensorial analysis, the tasters prefer wines treated with YDs than wine without treatment. This work opens new perspectives for the development of yeast preparations usable as alternatives or as complements to sulfites during wine aging and allows the improvement of white wines oxidative stability.

References

[1] M. Nikolantonaki, A.L. Waterhouse. Journal of Agricultural and Food Chemistry, 60 (34) (2012), pp. 8484-8491.
[2] Waterhouse, A. L., & Laurie, V. F. (2006). American Journal of Enology and Viticulture, 57(3), 306–313.
[3] P. Comuzzo, F. Battistutta, M. Vendrame, M.S. Páez, G. Luisi, R. Zironi. Food Chemistry, 168 (2015), pp. 107-114

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Nioi Claudia1, Meunier Fabrice2, Massot Arnaud3 and Moine Virginie3

1Institut des Sciences de la Vigne et du Vin, UMR OENOLOGIE (OENO) – ISVV, UMR 1366 Univ. Bordeaux, INRAE, Bordeaux INP
2Amarante Process-ADERA, Unité de Recherche Œnologie, UMR 1366  
3Biolaffort 

Contact the author

Keywords

Yeast derivatives, oxidation, white wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Holistic characterization of Sangiovese clones 

Sangiovese is one of Italy’s most cultivated grape varieties, and currently, over 130 different clones are registered in the national register of grape varieties. However, despite the sangiovese genome having been re-sequenced, limited molecular and genomic information is still available for this cultivar. The present study investigates the complexity of genotype-environment interactions of ten different Sangiovese clones, cultivated in the Chianti Rufina DOCG district over five consecutive vintages (2016-2020).

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

Building new temperature indexes for a local understanding of grapevine physiology

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt