GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Abstract

Context and purpose of the study – Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP. By means of different yield-regulating measures, i.e. biochemical thinning concepts, harvester thinning and Darwin-rotor (Fruit Tec Maschinenbau, Markdorf, Germany) the bunch architecture in SMPH is altered. A loose bunch architecture minimizes the risk of bunch rot and improves grape health. The aim of the study was to investigate the impact of different yield regulation strategies in SMPH on the bunch architecture.

Material and methods – Under field conditions, three different thinning methods were tested on the two fungus-resistant grape varieties Rondo, Regent, and additionally Riesling at Geisenheim, Germany (49°59´20” N; 7°55´56 ” E). Both biochemical and mechanical thinning concepts were pursued. The biochemical grape thinning treatment was applied during flowering with the plant growth regulator gibberellic acid (Gibb3; Plantan GmbH, Buchholz, Germany). The mechanical thinning was performed using a harvester at berry pea size stage of fruit development and the Darwin-rotor, which was originally developed for horticultural crops and commonly used for mechanical blossom thinning by horizontally rotating strings. In the vineyard it has been used for thinning young canes a week after budburst (E-L-scale: 9). The three thinning treatments were compared to non-treated VSP and SMPH control and bunch architecture has been investigated.

Results – Lower bunch weight, berry weight and rachis weight were detected in all SMPH treatments compared to VSP. Statistically significant lower bunch weight was detected for SMPH using harvester thinning compared to SMPH thinning with gibberellic acid, thinning with Darwin-rotor and a non-treated SMPH control. No differences in rachis weight were observed between the SMPH treatments. Our results indicate a looser bunch architecture using a harvester and gibberellic acid for yield regulation compared to a non-treated SMPH control. Whereas thinning with the Darwin-rotor resulted in an increase of berry diameter and bunch weight hence more compact bunches.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Jan SCHÄFER*, Matthias FRIEDEL and Manfred STOLL

Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany

Contact the author

Keywords

Semi-Minimal-Pruned Hedge (SMPH), yield regulation, thinning, bunch architecture, Darwin-rotor, gibberellic acid

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

AIM: Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated red grapewine variety in Greece1 located mainly in Nemea region, the largest PDO zone in Greece2. Although Agiorgitiko is considered as one of the most interesting red grape varieties, not only in Greece3, but also at international level4,5, however, there is a lack of knowledge

Can grapevine tolerance to bunch rot be directly induced by groundcover management?

Botrytis bunch rot occurrence is the most important limitation for the wine industry in humid environments. The effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). Previous studies of our group showed strong differences in bunch rot incidence between floor management treatments: cover crop (CC) vs weed-free strips under the trellis with herbicide (H). We observed that in some circumstances this reduction in bunch rot incidence occurred without major vine growth differences among treatments. The aim of the present study was to test the general hypothesis that other factors unrelated to grapevine vegetative expression could be more relevant to grapevine susceptibility to bunch rot.

Atypical ageing defect in Pinot Blanc wines: influence of the grapevine production management.

Atypical ageing (ATA) is a wine aroma fault occurring in white wines characterised by an early loss of varietal aroma as well as nuances of wet mop, acacia blossom, shoe polish and dirty rag among others. 2-aminoacetophenone (2AAP) – a degradation product of indole-3-acetic acid (IAA) – has been described as the major odour-active compound and chemical marker responsible for this off-flavour. Depending on the aroma intensity of wines, its odour threshold varies from 0.5 to 10.5 μg/L. It seems that a stress reaction in the vineyard triggered by climatic, pedological and viticultural factors can ultimately cause ATA development in wines and therefore shorten their shelf-life.

Biophysical and agronomical drivers of the distribution of Plasmopara viticola oospores in vineyard soils

Grapevine downy mildew (GDM), caused by the obligate biotroph oomycete Plasmopara viticola, is one of the most destructive diseases in viticulture.

Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1].