GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Abstract

Context and purpose of the study – Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP. By means of different yield-regulating measures, i.e. biochemical thinning concepts, harvester thinning and Darwin-rotor (Fruit Tec Maschinenbau, Markdorf, Germany) the bunch architecture in SMPH is altered. A loose bunch architecture minimizes the risk of bunch rot and improves grape health. The aim of the study was to investigate the impact of different yield regulation strategies in SMPH on the bunch architecture.

Material and methods – Under field conditions, three different thinning methods were tested on the two fungus-resistant grape varieties Rondo, Regent, and additionally Riesling at Geisenheim, Germany (49°59´20” N; 7°55´56 ” E). Both biochemical and mechanical thinning concepts were pursued. The biochemical grape thinning treatment was applied during flowering with the plant growth regulator gibberellic acid (Gibb3; Plantan GmbH, Buchholz, Germany). The mechanical thinning was performed using a harvester at berry pea size stage of fruit development and the Darwin-rotor, which was originally developed for horticultural crops and commonly used for mechanical blossom thinning by horizontally rotating strings. In the vineyard it has been used for thinning young canes a week after budburst (E-L-scale: 9). The three thinning treatments were compared to non-treated VSP and SMPH control and bunch architecture has been investigated.

Results – Lower bunch weight, berry weight and rachis weight were detected in all SMPH treatments compared to VSP. Statistically significant lower bunch weight was detected for SMPH using harvester thinning compared to SMPH thinning with gibberellic acid, thinning with Darwin-rotor and a non-treated SMPH control. No differences in rachis weight were observed between the SMPH treatments. Our results indicate a looser bunch architecture using a harvester and gibberellic acid for yield regulation compared to a non-treated SMPH control. Whereas thinning with the Darwin-rotor resulted in an increase of berry diameter and bunch weight hence more compact bunches.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Jan SCHÄFER*, Matthias FRIEDEL and Manfred STOLL

Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany

Contact the author

Keywords

Semi-Minimal-Pruned Hedge (SMPH), yield regulation, thinning, bunch architecture, Darwin-rotor, gibberellic acid

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Downy mildew, a disease caused by Plasmopara viticola (Berk. et Curt.) Berl. and De Toni, is one of the strongest threats to grapevine (Vitis vinifera L.) production. Recently, sources of resistance to downy mildew were identified among Caucasian germplasm. Among them, the Georgian variety Mgaloblishvili revealed a unique resistance mechanism. A genome wide association study (GWAS) allowed the identification of the genetic bases of Mgaloblishvili resistance, the loci Rpv29, Rpv30 and Rpv31. To dissect the three resistance loci, Mgaloblishvili genome was sequenced using PacBio HiFi reads and assembled.

Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Late season dehydration, bunch stem necrosis, sugar accumulation disorder and sunburn are various types of berry shrivel occurring in vineyards. The incidence of these types of shrivel, and the degree to which it occur are influenced by various factors in the vineyard. These factors include the presence of pests and diseases in the vineyard, genetic traits expressed in certain cultivars, as
well as climatic and environmental factors. The occurrence of berry shrivel in the vineyard could negatively impact the quality and quantity of the fruit produced.

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies.

Le aree viticole storiche nel mondo: i loro vitigni, la loro protezione e la tipicità dei vini in esse ottenuti

Il tema da trattare si riferisce ai vari ecosistemi viticoli mondiali, ovviamente non facilmente sintetizzabili in una relazione. Sostanzialmente si richiama

Techniques to study graft union formation in grapevine 

Grapevines are grown grafting in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which are primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, ideally grapevine rootstocks should be resistant to other soil borne pathogens and adapted to abiotic stress conditions. New rootstocks have the potential to adapt agriculture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite.