GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Abstract

Context and purpose of the study – Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP. By means of different yield-regulating measures, i.e. biochemical thinning concepts, harvester thinning and Darwin-rotor (Fruit Tec Maschinenbau, Markdorf, Germany) the bunch architecture in SMPH is altered. A loose bunch architecture minimizes the risk of bunch rot and improves grape health. The aim of the study was to investigate the impact of different yield regulation strategies in SMPH on the bunch architecture.

Material and methods – Under field conditions, three different thinning methods were tested on the two fungus-resistant grape varieties Rondo, Regent, and additionally Riesling at Geisenheim, Germany (49°59´20” N; 7°55´56 ” E). Both biochemical and mechanical thinning concepts were pursued. The biochemical grape thinning treatment was applied during flowering with the plant growth regulator gibberellic acid (Gibb3; Plantan GmbH, Buchholz, Germany). The mechanical thinning was performed using a harvester at berry pea size stage of fruit development and the Darwin-rotor, which was originally developed for horticultural crops and commonly used for mechanical blossom thinning by horizontally rotating strings. In the vineyard it has been used for thinning young canes a week after budburst (E-L-scale: 9). The three thinning treatments were compared to non-treated VSP and SMPH control and bunch architecture has been investigated.

Results – Lower bunch weight, berry weight and rachis weight were detected in all SMPH treatments compared to VSP. Statistically significant lower bunch weight was detected for SMPH using harvester thinning compared to SMPH thinning with gibberellic acid, thinning with Darwin-rotor and a non-treated SMPH control. No differences in rachis weight were observed between the SMPH treatments. Our results indicate a looser bunch architecture using a harvester and gibberellic acid for yield regulation compared to a non-treated SMPH control. Whereas thinning with the Darwin-rotor resulted in an increase of berry diameter and bunch weight hence more compact bunches.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Jan SCHÄFER*, Matthias FRIEDEL and Manfred STOLL

Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany

Contact the author

Keywords

Semi-Minimal-Pruned Hedge (SMPH), yield regulation, thinning, bunch architecture, Darwin-rotor, gibberellic acid

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Impact of the non-volatile matrix composition on red wine aroma release and perception of olfactory and oral cues

Aroma and mouthfeel cues are the main characteristics defining red wine quality. During wine tasting, perceptual and physical-chemical phenomena leading to mutual interactions between volatiles and non-volatiles sensory active compounds, can occur. Aroma perception depends on the release of volatiles from wine, that is affected by wine constituents present in the medium (Pittari et al. 2021; Lyu et al. 2021). Our aim was to evaluate the effect of the non-volatile wine matrix composition (polyphenols, PPh) on the release and perception of red wine aromas by an experiment of matrix enrichment.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

In the context of climate change and for the sustainable exploitation of Mediterranean vineyards, it is necessary to use new strategies to adapt to the new climatic conditions.