Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone


AIM: Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated red grapewine variety in Greece1 located mainly in Nemea region, the largest PDO zone in Greece2. Although Agiorgitiko is considered as one of the most interesting red grape varieties, not only in Greece3, but also at international level4,5, however, there is a lack of knowledge concerning the phenolic and aromatic profile of the Agiorgitiko varietal wines. For this study eight vineyards, from the most representative areas of the PDO Nemea zone, were selected in order to study the phenolic and aromatic potential of the variety and the heterogeneity of the wine composition among the different areas.

METHODS: Within the eight vineyards, vines were selected according to the same selection protocol. From the selected vineyards, 60 kg of grapes were harvested at the optimum technological maturity level using a defined picking protocol. Microvinifications were conducted, in triplicate, applying the same winemaking protocol. The produced wines were analyzed for their main oenological parameters and for their phenolic and volatile composition. Moreover, the wines were evaluated sensorially by a trained panel.

RESULTS: Phenolic and anthocyanidin content of wines ranged from medium to high levels in comparison to other international or Greek red varietal wines. Also, the volatile compounds concentrations presented differences among the wines (p<0.05) from different areas as also found when applying sensory evaluation of the samples. Statistical analysis of the sensory evaluation results illustrated an aromatic profile of Agiorgitiko wines composed by red fruit aroma descriptors and this was characterized for most of the wines analyzed.


The present study provides a detailed approach on the characterization of the phenolic and aromatic content of Agiorgitiko wines, which is a great tool for improving the quality of the PDO Nemea wines. Also, in this study the variability of Nemea’s region pedoclimatic conditions that were depicted on wine and grape characteristics from different areas, implies the need of further research on the impact of “terroir” in Agiorgitiko wines produced from different areas.


Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article


Maria Ioanna Xenia , Elli GOULIOTI, Nikolaos KONTOUDAKIS, Greece Yorgos KOTSERIDIS

AUA Department of FS&HN, Laboratory of Enology and Alcoholic Drinks, Athens, Greece,  

Contact the author


Red wine phenolics, aromatic content, agiorgitiko, nemea


Related articles…

Identification of key-odorants in Sauternes Wines

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD).

Stable or dynamic? How phenotypic plasticity could be key to select for grapevine adaptation?

Climate change will require the adaptation of agricultural systems and among the different means of adaptation, changing plant material is a promising strategy. In viticulture, different levels of diversity are currently exploited: clonal and varietal diversity for rootstocks and scions. A huge quantity of research aims to evaluate different genotypes in different environmental conditions to identify which ones are the best adapted and the most tolerant to future environmental conditions.

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.

Effect of scion-rootstock combinations on the performance of a near-infrared (NIR) spectroscopy method for determining vine water status

In the context of sustainable viticulture, modern and efficient techniques to determine water status are required to optimize irrigation practices. Proximal techniques such as thermography and spectroscopy have shown promising results. When these techniques are incorporated into mobile systems is possible to evaluate the water status on-the-go, offering the possibility to generate variability maps. However, in most cases, complex protocols of data acquisition and analysis are required. Also, the inherent physiological behaviour of the plants under certain water stress conditions needs to be considered. Therefore, the aim of this study was to evaluate the effect of scion-rootstock combinations on the performance of a predefined plant-based method based on proximal near-infrared (NIR) spectroscopy.

Identification of cis-2-methyl-4-propyl-1,3-oxathiane as a new volatile sulfur compound (VSC) in wine

Despite their trace concentrations, volatile sulfur compounds (VSCs) are an important category of flavour-active compounds that significantly contribute to desirable or undesirable aromas of many foods and beverages. In wines, VSCs in the form of polyfunctional thiols, notably 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate (3-SHA), and 4-sulfanyl-4-methyl-pentan-2-one (4-MSP), possess extremely low olfactory thresholds (≈ ng/L) and pleasant “tropical aroma” notes. They have received much attention with respect to their sensory contributions, quantitative occurrences, biogenesis, and thiol management through viticulture and winemaking. However, the fate of these potent volatiles are still not fully understood.