GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Abstract

Context and purpose of the study – Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP. By means of different yield-regulating measures, i.e. biochemical thinning concepts, harvester thinning and Darwin-rotor (Fruit Tec Maschinenbau, Markdorf, Germany) the bunch architecture in SMPH is altered. A loose bunch architecture minimizes the risk of bunch rot and improves grape health. The aim of the study was to investigate the impact of different yield regulation strategies in SMPH on the bunch architecture.

Material and methods – Under field conditions, three different thinning methods were tested on the two fungus-resistant grape varieties Rondo, Regent, and additionally Riesling at Geisenheim, Germany (49°59´20” N; 7°55´56 ” E). Both biochemical and mechanical thinning concepts were pursued. The biochemical grape thinning treatment was applied during flowering with the plant growth regulator gibberellic acid (Gibb3; Plantan GmbH, Buchholz, Germany). The mechanical thinning was performed using a harvester at berry pea size stage of fruit development and the Darwin-rotor, which was originally developed for horticultural crops and commonly used for mechanical blossom thinning by horizontally rotating strings. In the vineyard it has been used for thinning young canes a week after budburst (E-L-scale: 9). The three thinning treatments were compared to non-treated VSP and SMPH control and bunch architecture has been investigated.

Results – Lower bunch weight, berry weight and rachis weight were detected in all SMPH treatments compared to VSP. Statistically significant lower bunch weight was detected for SMPH using harvester thinning compared to SMPH thinning with gibberellic acid, thinning with Darwin-rotor and a non-treated SMPH control. No differences in rachis weight were observed between the SMPH treatments. Our results indicate a looser bunch architecture using a harvester and gibberellic acid for yield regulation compared to a non-treated SMPH control. Whereas thinning with the Darwin-rotor resulted in an increase of berry diameter and bunch weight hence more compact bunches.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Jan SCHÄFER*, Matthias FRIEDEL and Manfred STOLL

Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany

Contact the author

Keywords

Semi-Minimal-Pruned Hedge (SMPH), yield regulation, thinning, bunch architecture, Darwin-rotor, gibberellic acid

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.