IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Significance of factors making Riesling an iconic grape variety

Significance of factors making Riesling an iconic grape variety

Abstract

Riesling is the iconic grape variety of Germany and accounts for 23% of the German viticulture acreage, which comprises 45% of the worldwide Riesling plantings. Riesling wines offer a wide array of styles from crisp sparkling wines to highly concentrated and sweet Trockenbeerenauslese or Icewines. However, its thin berry skin makes Riesling more vulnerable to detrimental environmental threats than other white wine varieties.

Trying to adapt Riesling to climate change we investigate how to mitigate premature Botrytis infections, the loss of quality and yield due to sunburn or increasing levels of TDN, which causes the unique petrol off-flavor. Weather variation from year to year necessitates an active acidity management, either diminishing acidity by skin maceration or use of lactic acid bacteria but also more recently lowering pH by ion exchange resins or malic acid producing yeast. A strong focus is to enhance intensity and diversity of Riesling aroma by viticultural and oenological measures, which are controlled by sophisticated chemical analysis including a measure of odorless precursors.

Riesling is a highly transparent variety in respect to terroir, deviating strongly in odor and taste due to different bed rocks and soil types, micro climates and inclination of individual vineyards. Applying comprehensive stable isotope dilution analysis of volatiles and sensory evaluation we could demonstrate not only the sensory relevance of terroir, but also how stable these patterns were over five vintages and even individual winemaking measures. Using next generation gen- sequencing techniques to study spontaneous fermentations, we could also reveal the significant impact of site specific microbiomes.

Riesling wines are highly acclaimed for their longevity due to their exciting balance of acidity and sweetness. Re-tasting terroir defined Riesling wines again after four years revealed the expected modification in sensory terms due to aging, but prove that the general differences among the specific terroir expressions were conserved through the maturation process.

Many of these scientific puzzle pieces were successfully implemented by the Riesling producers over the last two decades and they succeeded to improve Riesling wines in each of its multitude of stylistic facets. However, it will be a challenge to preserve their unique and diverse characters in the course of progressive climate change.

DOI:

Publication date: November 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Ulrich Fischer1

1Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, 67435 Neustadt, Germany

Contact the author

Keywords

Riesling, aroma compounds and precursors, sensory evaluation, terroir, acidity management, ageing of wine

Tags

IVAS 2022

Citation

Related articles…

Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Port wine is a fortified wine exclusively produced in the Douro Appellation (Portugal) under very specific conditions resulting from natural and human factors. Its intrinsic aroma characteristics are modulated upon a network of factors, such as the terroir, varieties and winemaking procedures that include a wide set of steps, namely the fortification with grape spirit (ca. 77% v/v ethanol).

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples.

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector.

The antioxidant properties of wine lees extracts in model wine

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry.