OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Hplc-ms analysis of carotenoids as potential precursors for 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in riesling grapes

Hplc-ms analysis of carotenoids as potential precursors for 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in riesling grapes

Abstract

In recent years, an undesirable premature “aged” character has been noticed in a growing number of young Riesling wines, associated with extreme weather conditions leading to increased radiation intensity and/ or sun exposure of grapes. One of the compounds responsible for rapid aging is 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), a grape derived C13-norisoprenoid formed as biodegradation product of carotenoids that participate in light harvesting and are essential for photoprotection against excess light in the blue and green wavelength region (350–550 nm). 

Our interest in carotenoids as aroma precursors led us to examine the effect of qualitative light manipulation in the vineyard by coloured shade cloth (green, red and black) on carotenoid profile and accumulation in grapes during the ripening season. Through wavelength modulation of the radiation reaching the vines and therefore regulate the key absorbance maxima of the carotenoids, it was possible to reduce TDN concentrations in finished wines. 

This presentation describes HPLC-MS analysis of carotenoids in grapes and will focus on selected carotenoids potentially associated with the formation of TDN.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Yevgeniya Grebneva, Josh Hixson, Kathrin Vollmer, Cory Black, Markus Herderich

The Australian Wine Research Institute PO Box 197 Glen Osmond SA 5064, Australia

Contact the author

Keywords

Carotenoids, TDN, Riesling, HPLC-MS 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages

Differences in wine flavour proceed primarily from grape quality. Environmental factors determined by the climate, soil and training systems modify many grape and wine quality traits. Metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectra has been proved to be useful to study multifactorial effects of the vine environment on intricate grape quality traits. The capacity of this method to discriminate the environmental effects on wine has to be demonstrated.

The influence of irrigation and crop load management on berry composition and yield in Chardonnay

Australian grape producers are facing a difficult wine market, therefore a reduction of vineyard production costs is critical.

Analyzing firms’ dynamic capabilities to identify the actions for a sustainable future of the Italian wine sector

The UN Agenda 2030 for Sustainable Development, a global plan for a better future, requires actions.

Big data analysis of pesticides from the vine to the winery

Of biocontrol products and resistant grape varieties, synthetic pesticides are still widely used to control fungal diseases and protect vines from potential damage caused by pests. The use of pesticides is strictly regulated, and their use can sometimes lead to transfer from the grapes to the must and then into the wine. The study of pesticide residues in grapes and wines is commonly carried out by wine producers in order, among other things, to optimize treatment routes, check that products comply with regulations, and ultimately guarantee the food safety of the wine.

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress.