OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Hplc-ms analysis of carotenoids as potential precursors for 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in riesling grapes

Hplc-ms analysis of carotenoids as potential precursors for 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in riesling grapes

Abstract

In recent years, an undesirable premature “aged” character has been noticed in a growing number of young Riesling wines, associated with extreme weather conditions leading to increased radiation intensity and/ or sun exposure of grapes. One of the compounds responsible for rapid aging is 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), a grape derived C13-norisoprenoid formed as biodegradation product of carotenoids that participate in light harvesting and are essential for photoprotection against excess light in the blue and green wavelength region (350–550 nm). 

Our interest in carotenoids as aroma precursors led us to examine the effect of qualitative light manipulation in the vineyard by coloured shade cloth (green, red and black) on carotenoid profile and accumulation in grapes during the ripening season. Through wavelength modulation of the radiation reaching the vines and therefore regulate the key absorbance maxima of the carotenoids, it was possible to reduce TDN concentrations in finished wines. 

This presentation describes HPLC-MS analysis of carotenoids in grapes and will focus on selected carotenoids potentially associated with the formation of TDN.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Yevgeniya Grebneva, Josh Hixson, Kathrin Vollmer, Cory Black, Markus Herderich

The Australian Wine Research Institute PO Box 197 Glen Osmond SA 5064, Australia

Contact the author

Keywords

Carotenoids, TDN, Riesling, HPLC-MS 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Economic comparison of viticultural cultivation systems: evaluating costs across integrated, organic, and biodynamic practices

The cost-effectiveness of a winery requires constant cost control in order to ensure competitiveness on the wine market.

The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

The wine sector is being directly affected by climate change. Temperatures above 30ºC can cause a lag between the ripening of the berry pulp (a rapid increase in sugar content) and the skin

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.

Development of a GRASS-GIS application for the characterization of vineyards in the province of Trento

The physical factors that influence the grape ripening include elevation, slope, aspect, potential global radiation, sun hours and soil type of the vineyards.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.