OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Evolution of the crown procyanidins during wine making and aging in bottle

Evolution of the crown procyanidins during wine making and aging in bottle

Abstract

Condensed tannins are widely distributed in plant‐derived foods and beverages like grape, red wine, nuts, tea, apples and chocolate in which they contribute to multiple sensorial properties such as flavor, color, and taste (astringency and bitterness). During the wine making process, condensed tannins are extracted from the skins and seeds of the grape and their concentration in red wine are influenced by the grape varieties as well as technical process used. Recently, a condensed tannin sub-family with an unusual skeleton has been reported, and named crown procyanidin. These compounds have a specific structural feature of being cyclic and being composed only of B type inter-flavonoid linkages. All the sub-units of the NMR characterized tetramer are (−)-epicatechin and it presents within its structure a relatively big cavity and composed of four aromatic rings and several phenol functions. The first identification of the tetramer and some pentamers has been report in the red wine. However, recent study showed that these molecules are specifically located in grape skins and there concentration in red wine depends of the grape varieties. 

The goal of this study was to determine the evolution kinetics of crown procyanidins (tetramer and pentamers) during the wine making process as well as during the aging of red wine in bottles. The organoleptic impact of these new tannins sub-family has been also investigated. 

Firstly, the extraction evolution kinetics of crown procyanidins was determined during the wine making of Carbernet Sauvignon grape harvested in Paulliac, Bordeaux. It appears that the crown procyanidins are extracted at the beginning of the maceration and are highly water soluble in contrast of non-cyclic condensed tannins which need alcohol to be extracted. Indeed 70 % of crown procyanidins are extracted during the first 24 hours. Secondly, red wines aged between 2 to 20 years have been obtained from the same winery and sensorial analyses as well as chemical analysis have been performed on an UPLC-UV-QTOF. During red wine aging in bottle, the crown procyanidins concentrations remain stable, whereas the noncyclic condensed tannins decreased with time. In order to understand why the concentration of crown procyanidins remain stable, some oxidisability test has been performed to compare the crown procyanidins and the noncyclic condensed tannins and the crown procyanidins appeared to be more resistant to oxidation than noncyclic condensed tannins.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Alicia Jouin, Marina Riveiro Canosa, Pierre-Louis Teissèdre, Michael Jourdes

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France.

Contact the author

Keywords

Crown procyanidins, Condensed tannins, Wine making, Wine aging

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Ground vs trellis in rootstock cane production fields

Context and purpose of the study. The vine nursery sector is undergoing a transformation to meet growing environmental and sanitary demands.

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

The effects of soil health management practices on soil organic carbon persistence and accrual in vineyards

Context and purpose of the study. Climate change is already threatening California vineyards, as they grapple with increasing extreme weather events and drier growing seasons.

Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Valpolicella is an Italian region famous for the production of high quality red wines. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Exploring the potential of Hanseniaspora vineae for quality wines production

Traditionally, non-saccharomyces yeasts were deemed undesirable in winemaking, for this reason, it is a common practice to add sulphites to prevent their proliferation during the initial stages of vinification. However, the current research on yeast diversity has unveiled numerous non-saccharomyces strains possessing advantageous traits that enrich the sensory profile of wines. The genus hanseniaspora is often associated with wine fermentation and is also commonly found on grapes.