OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Evolution of the crown procyanidins during wine making and aging in bottle

Evolution of the crown procyanidins during wine making and aging in bottle

Abstract

Condensed tannins are widely distributed in plant‐derived foods and beverages like grape, red wine, nuts, tea, apples and chocolate in which they contribute to multiple sensorial properties such as flavor, color, and taste (astringency and bitterness). During the wine making process, condensed tannins are extracted from the skins and seeds of the grape and their concentration in red wine are influenced by the grape varieties as well as technical process used. Recently, a condensed tannin sub-family with an unusual skeleton has been reported, and named crown procyanidin. These compounds have a specific structural feature of being cyclic and being composed only of B type inter-flavonoid linkages. All the sub-units of the NMR characterized tetramer are (−)-epicatechin and it presents within its structure a relatively big cavity and composed of four aromatic rings and several phenol functions. The first identification of the tetramer and some pentamers has been report in the red wine. However, recent study showed that these molecules are specifically located in grape skins and there concentration in red wine depends of the grape varieties. 

The goal of this study was to determine the evolution kinetics of crown procyanidins (tetramer and pentamers) during the wine making process as well as during the aging of red wine in bottles. The organoleptic impact of these new tannins sub-family has been also investigated. 

Firstly, the extraction evolution kinetics of crown procyanidins was determined during the wine making of Carbernet Sauvignon grape harvested in Paulliac, Bordeaux. It appears that the crown procyanidins are extracted at the beginning of the maceration and are highly water soluble in contrast of non-cyclic condensed tannins which need alcohol to be extracted. Indeed 70 % of crown procyanidins are extracted during the first 24 hours. Secondly, red wines aged between 2 to 20 years have been obtained from the same winery and sensorial analyses as well as chemical analysis have been performed on an UPLC-UV-QTOF. During red wine aging in bottle, the crown procyanidins concentrations remain stable, whereas the noncyclic condensed tannins decreased with time. In order to understand why the concentration of crown procyanidins remain stable, some oxidisability test has been performed to compare the crown procyanidins and the noncyclic condensed tannins and the crown procyanidins appeared to be more resistant to oxidation than noncyclic condensed tannins.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Alicia Jouin, Marina Riveiro Canosa, Pierre-Louis Teissèdre, Michael Jourdes

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France.

Contact the author

Keywords

Crown procyanidins, Condensed tannins, Wine making, Wine aging

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role. Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application. We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Effect of fertigation strategies to adapt PGI Côtes de Gascogne production to hot vintage

The development of fertigation could be a possible solution to adapt PGI Côtes de Gascogne (south-western France) wine production to climate change. The goal would be to limit the negative effects of water stress on yield performance expectation (around 15 tons per hectare) and to make the use of fertilizers more efficient. This study aimed to compare the effects of three strategies of water and minerals supply on grapes and wines qualities. Two fertigation practices were compared to a rainfed control which is the current standard of the local grape growing production. The fertilizers (nitrogen and potassium) were (i) fully brought by irrigation pipe during the season, (ii) partially brought by irrigation pipe and partially on the soil or (iii) fully brought on the soil at the beginning of the season for the non-irrigated control (local standard). The trial was run on cv. Colombard trained on spur pruned with vertical shoot positioning system on a sandy-silty-clay soil over the 2020 vintage which was particularly hot for the region. Moderate to strong water deficit appeared during the growing period of the berries and held on after veraison. Irrigation strategies allowed for maintaining grapevine without water deficit and being significantly different from the control water status. Grapevine with fully or partial fertigation strategies produced 25% more yield mainly due to the increase of the bunch weight. Also, the fully fertigation showed the best ratio between yield and maturity and brought 30% less of fertilizers (both nitrogen and potassium) than the two other strategies. Finally, the analysis of aromatic compounds in Colombard wines, varietal thiols family, showed the same level of concentrations for the 3 treatments, confirming that the yield performance did not impact the aromatic potential in this trial.

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.