OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Evolution of the crown procyanidins during wine making and aging in bottle

Evolution of the crown procyanidins during wine making and aging in bottle

Abstract

Condensed tannins are widely distributed in plant‐derived foods and beverages like grape, red wine, nuts, tea, apples and chocolate in which they contribute to multiple sensorial properties such as flavor, color, and taste (astringency and bitterness). During the wine making process, condensed tannins are extracted from the skins and seeds of the grape and their concentration in red wine are influenced by the grape varieties as well as technical process used. Recently, a condensed tannin sub-family with an unusual skeleton has been reported, and named crown procyanidin. These compounds have a specific structural feature of being cyclic and being composed only of B type inter-flavonoid linkages. All the sub-units of the NMR characterized tetramer are (−)-epicatechin and it presents within its structure a relatively big cavity and composed of four aromatic rings and several phenol functions. The first identification of the tetramer and some pentamers has been report in the red wine. However, recent study showed that these molecules are specifically located in grape skins and there concentration in red wine depends of the grape varieties. 

The goal of this study was to determine the evolution kinetics of crown procyanidins (tetramer and pentamers) during the wine making process as well as during the aging of red wine in bottles. The organoleptic impact of these new tannins sub-family has been also investigated. 

Firstly, the extraction evolution kinetics of crown procyanidins was determined during the wine making of Carbernet Sauvignon grape harvested in Paulliac, Bordeaux. It appears that the crown procyanidins are extracted at the beginning of the maceration and are highly water soluble in contrast of non-cyclic condensed tannins which need alcohol to be extracted. Indeed 70 % of crown procyanidins are extracted during the first 24 hours. Secondly, red wines aged between 2 to 20 years have been obtained from the same winery and sensorial analyses as well as chemical analysis have been performed on an UPLC-UV-QTOF. During red wine aging in bottle, the crown procyanidins concentrations remain stable, whereas the noncyclic condensed tannins decreased with time. In order to understand why the concentration of crown procyanidins remain stable, some oxidisability test has been performed to compare the crown procyanidins and the noncyclic condensed tannins and the crown procyanidins appeared to be more resistant to oxidation than noncyclic condensed tannins.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Alicia Jouin, Marina Riveiro Canosa, Pierre-Louis Teissèdre, Michael Jourdes

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France.

Contact the author

Keywords

Crown procyanidins, Condensed tannins, Wine making, Wine aging

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

Agronomic and qualitative effects of early leaf removal on cv.

Aim: The regulation of the vegetative-reproductive balance of a vineyard is a critical aspect for the quality of grapes. Early leaf removal, generally applied before the phenological stage of flowering, is mainly used as a technique to control yield and improve grape health, aimed at increasing the quality of the wine.

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.