terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of loci associated with specialised metabolites in Vitis vinifera

Identification of loci associated with specialised metabolites in Vitis vinifera

Abstract

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised. This study therefore aimed to identify novel loci associated with grapevine volatile organic and phenolic compounds. Chemical analysis of these compound classes was performed via GC-MS and UPLC analysis in a grapevine mapping population, and the quantified metabolites used for quantitative trait loci (QTL) analysis.  Several significant QTLs associated with terpenes and phenolic compounds were identified, and the underlying genomic regions were investigated. For phenolic compounds, a novel locus associated with caftaric acid biosynthesis was identified, and a hydroxycinnamoyltransferase (VvHCT) was investigated as a candidate gene. Several terpene synthases (VvTPSs) co-localised with QTLs associated with monoterpenes and sesquiterpenes. Notably, loci on chromosomes 12 and 13 were shown to be associated with geraniol and cyclic monoterpene accumulation, respectively. The locus on chromosome 12 was shown to contain a geraniol synthase gene (VvGer), while the locus on chromosome 13 contained an a-terpineol synthase gene (VvTer). Further molecular and genomic investigation of VvGer and VvTer found that these genes appear in tandemly duplicated clusters, with high levels of hemizygosity which was further supported by genomic data from recently published diploid grapevine genomes. Interestingly, copy number analysis demonstrated that VvTer gene copy number correlated with both VvTerexpression and the accumulation of cyclic monoterpenes, highlighting the impact of VvTPS gene duplication and copy number variation on terpene accumulation in grapevine.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Robin Bosman*1 and Justin Graham Lashbrooke2

1South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
2 Department of Genetics, Stellenbosch University, South Africa.

Contact the author*

Keywords

terpenes, TPS, grapevine, gene copy number, genomics, QTL, phenolics

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.