terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of loci associated with specialised metabolites in Vitis vinifera

Identification of loci associated with specialised metabolites in Vitis vinifera

Abstract

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised. This study therefore aimed to identify novel loci associated with grapevine volatile organic and phenolic compounds. Chemical analysis of these compound classes was performed via GC-MS and UPLC analysis in a grapevine mapping population, and the quantified metabolites used for quantitative trait loci (QTL) analysis.  Several significant QTLs associated with terpenes and phenolic compounds were identified, and the underlying genomic regions were investigated. For phenolic compounds, a novel locus associated with caftaric acid biosynthesis was identified, and a hydroxycinnamoyltransferase (VvHCT) was investigated as a candidate gene. Several terpene synthases (VvTPSs) co-localised with QTLs associated with monoterpenes and sesquiterpenes. Notably, loci on chromosomes 12 and 13 were shown to be associated with geraniol and cyclic monoterpene accumulation, respectively. The locus on chromosome 12 was shown to contain a geraniol synthase gene (VvGer), while the locus on chromosome 13 contained an a-terpineol synthase gene (VvTer). Further molecular and genomic investigation of VvGer and VvTer found that these genes appear in tandemly duplicated clusters, with high levels of hemizygosity which was further supported by genomic data from recently published diploid grapevine genomes. Interestingly, copy number analysis demonstrated that VvTer gene copy number correlated with both VvTerexpression and the accumulation of cyclic monoterpenes, highlighting the impact of VvTPS gene duplication and copy number variation on terpene accumulation in grapevine.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Robin Bosman*1 and Justin Graham Lashbrooke2

1South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
2 Department of Genetics, Stellenbosch University, South Africa.

Contact the author*

Keywords

terpenes, TPS, grapevine, gene copy number, genomics, QTL, phenolics

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).