OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Abstract

Polyphenols, namely anthocyanins and flavanols, are key compounds for wine color definition and taste perception (astringency and bitterness). During winemaking, several processes could influence the polyphenol composition and, therefore, the organoleptic parameters of wine. 

It is widely known that fining can remove soluble substances, including polymerized tannins and coloring matter in red wines affecting the organoleptic properties of wine. The use of yeast protein extracts (YPE) as fining agents arises from the allergic properties observed in classic protein-based fining agents. From the oenological point of view, it was already verified that this new fining agents promote the clarity and stabilization of wine, however is still a gap in their influence in polyphenol composition and the related organoleptic properties. 

The aim of this work is to understand the molecular mechanisms as how YPE-wine polyphenols interactions could modulate the color as well as the taste sensations (astringency and bitterness) after wine fining with YPE (developed by Proenol, Biotechnology Industry). Briefly, polyphenols related with astringency and bitterness were analyzed by LC-MS. The influence of YPE on wine color was also assayed by CieLab system. Furthermore, the effect of YPE-wine on the interaction with salivary proteins was also analyzed by SDS-PAGE after wine ingestion during a sensory evaluation. Finally, the results from experimental data were compared with the results obtained by sensorial panel. 

Overall, it was concluded that wines clarified with YPE revealed a significant decrease in the majority of identified compounds related to bitterness and astringency. The study of wine color revealed that YPE had the ability to reduce yellow color of white wines and did not remove red color of red and rosé wines, which is an important aspect in consumption market. Besides the decreasing of several polyphenols related with taste perception, some relevant differences were observed in the salivary protein profile by SDS-PAGE. The results observed herein highlighted the relationship between (1) the taste perception, (2) the interaction between salivary proteins and wine polyphenols during the sensorial evaluation and (3) the effect of YPE fining in wine polyphenols. 

In summary, YPE reveals to be a good alternative to protein animal origin fining agents due to the ability to promote wine sensorial properties.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Telmo Francisco, Rosa Pérez, Susana Soares, Nuno Mateus, Victor Freitas, Adriana Xavier, Manuel Figueiredo, Filipe Centeno, Maria Teixeira

LAQV-REQUINTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto
PROENOL, Indústria Biotecnológica, Lda, Travessa das Lages nº267, Apto 547, Canelas, VNG 4405-194 Portugal

Contact the author

Keywords

fining, yeast protein extract, organoleptic properties, salivary proteins 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

The effect of viticultural treatment on grape juice chemical composition

Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.

The adaptation and resilience of scions and rootstocks to water constraint

The ability of grapevine cultivars and rootstocks to cope with and adapt to recurring water constraints is the focus of this study. The contribution of intrinsic (epigenetic) and extrinsic (rootzone microbial community) factors to water stress resilience will be discussed. The study was conducted in a validated model vineyard where three scion cultivars (Pinotage, Shiraz, and Cabernet Sauvignon) on two rootstocks (Richter 110 and USVIT8-7) grow under recurring seasonal water constraint (and control) scenarios since planting (in 2020). Comprehensive profiling of the site, soil, atmospheric conditions, plants, and their physiological responses provide contextual data for the analyses conducted.

Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Polyphenolic compounds are considered to have a major impact on the quality of red wines. Sensory impact, such as astringency and bitterness, stems directly from tannin composition. Thenceforth, quick analytical measurement of phenolic compounds appears to be a real challenge for winemaking monitoring and process control. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. A reliable and rapid method to obtain this kind of measurement is Fourier Transform Infrared (FTIR) spectroscopy.