OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Abstract

Polyphenols, namely anthocyanins and flavanols, are key compounds for wine color definition and taste perception (astringency and bitterness). During winemaking, several processes could influence the polyphenol composition and, therefore, the organoleptic parameters of wine. 

It is widely known that fining can remove soluble substances, including polymerized tannins and coloring matter in red wines affecting the organoleptic properties of wine. The use of yeast protein extracts (YPE) as fining agents arises from the allergic properties observed in classic protein-based fining agents. From the oenological point of view, it was already verified that this new fining agents promote the clarity and stabilization of wine, however is still a gap in their influence in polyphenol composition and the related organoleptic properties. 

The aim of this work is to understand the molecular mechanisms as how YPE-wine polyphenols interactions could modulate the color as well as the taste sensations (astringency and bitterness) after wine fining with YPE (developed by Proenol, Biotechnology Industry). Briefly, polyphenols related with astringency and bitterness were analyzed by LC-MS. The influence of YPE on wine color was also assayed by CieLab system. Furthermore, the effect of YPE-wine on the interaction with salivary proteins was also analyzed by SDS-PAGE after wine ingestion during a sensory evaluation. Finally, the results from experimental data were compared with the results obtained by sensorial panel. 

Overall, it was concluded that wines clarified with YPE revealed a significant decrease in the majority of identified compounds related to bitterness and astringency. The study of wine color revealed that YPE had the ability to reduce yellow color of white wines and did not remove red color of red and rosé wines, which is an important aspect in consumption market. Besides the decreasing of several polyphenols related with taste perception, some relevant differences were observed in the salivary protein profile by SDS-PAGE. The results observed herein highlighted the relationship between (1) the taste perception, (2) the interaction between salivary proteins and wine polyphenols during the sensorial evaluation and (3) the effect of YPE fining in wine polyphenols. 

In summary, YPE reveals to be a good alternative to protein animal origin fining agents due to the ability to promote wine sensorial properties.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Telmo Francisco, Rosa Pérez, Susana Soares, Nuno Mateus, Victor Freitas, Adriana Xavier, Manuel Figueiredo, Filipe Centeno, Maria Teixeira

LAQV-REQUINTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto
PROENOL, Indústria Biotecnológica, Lda, Travessa das Lages nº267, Apto 547, Canelas, VNG 4405-194 Portugal

Contact the author

Keywords

fining, yeast protein extract, organoleptic properties, salivary proteins 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

How distinctive are single vineyard Gewürztraminer musts and wines from Alto Adige (Italy) based on untargeted analysis, sensory profiling, and chemometric elaboration?

Vitis vinifera L. ‘Gewürztraminer’ is a historical grape variety of Alto Adige (Südtirol), Italy, which is widely grown in the area of Tramin an der Weinstraße, but is also grown globally. It produces highly aromatic wines that are strongly influenced by the terroir of the vineyard sites where they are grown. This study looked at musts and young wines from ‘Gewürztraminer’ grapes harvested in seven distinct vineyards near Tramin and then processed at Cantina di Termeno, minimizing winemaking protocol variability. Samples were profiled using bidimensional gas chromatography–time-of-flight mass spectrometry, liquid chromatography coupled to electrochemical detection, and near-IR spectrometry. The data were subjected to Principle Component Analysis and Hierarchical Clustering Analysis. Sensory discriminant testing was undertaken using the sorting method with a semi-trained panel, and the data were processed using Multidimensional Scaling. Seven must/wine pairs could be distinguished based on their untargeted volatilome profiles and on sensory evaluation. As expected, there were greater differences in the volatile compounds between the wines than between the musts. The wines from vineyards 4 and 5 were nonetheless quite homogenous in terms of chemical and sensory analyses, as were the wines from vineyards 1 and 3. For the phenolic profile, differences were noted between the musts and wines of vineyards 2, 3, and 4, but the musts from vineyards 5 and 7 were similar. Sensory analysis showed the wines from vineyards 6 and 7 to be distinct from the rest. These results reinforce that the composition of ‘Gewürztraminer’ musts and wines is strongly determined by vineyard site, even in a small geographic area with high variability of the terroir (soil and microclimate), and that these differences are apparent in the flavours and aromas of the finished wines. Further confirmation would require a larger sample of wines, preferably from several vintages.

Soil monoliths, soil variability and terroir

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.  

The effect of wine cork closures on volatile sulfur compounds during accelerated post-bottle ageing in Shiraz wines

Reduced off-flavour is an organoleptic defect due to an excess of volatile sulfur compounds (VSC) in wine and often happening in Shiraz wines. This off-flavour is a direct consequence of the lack of oxygen flow during winemaking and bottle storage. Therefore, wine closure could have a direct impact on the formation of VSC due to the oxygen transfer rate that can modulate their levels. Even if dimethylsulfide (DMS) contributes to reduced off-flavor, it is also a fruity note enhancer in wine and its evolution during wine ageing is not well understood.

Use of glutathione and a selected strain of metschnikowia pulcherrima as alternatives to sulphur dioxide to inhibit natural tyrosinase of grape must and prevent browning

The enzymatic browning of grape must is still a major problem in oenology today [1] being particularly serious when the grapes have been infected by grey rot [2]. Browning is an oxidation process that causes certain foods to turn brown, which often leads to them being rejected by consumers [3]. This is a particular problem in the case of wine, because grape must is very vulnerable to enzymatic browning [4].