OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Abstract

Polyphenols, namely anthocyanins and flavanols, are key compounds for wine color definition and taste perception (astringency and bitterness). During winemaking, several processes could influence the polyphenol composition and, therefore, the organoleptic parameters of wine. 

It is widely known that fining can remove soluble substances, including polymerized tannins and coloring matter in red wines affecting the organoleptic properties of wine. The use of yeast protein extracts (YPE) as fining agents arises from the allergic properties observed in classic protein-based fining agents. From the oenological point of view, it was already verified that this new fining agents promote the clarity and stabilization of wine, however is still a gap in their influence in polyphenol composition and the related organoleptic properties. 

The aim of this work is to understand the molecular mechanisms as how YPE-wine polyphenols interactions could modulate the color as well as the taste sensations (astringency and bitterness) after wine fining with YPE (developed by Proenol, Biotechnology Industry). Briefly, polyphenols related with astringency and bitterness were analyzed by LC-MS. The influence of YPE on wine color was also assayed by CieLab system. Furthermore, the effect of YPE-wine on the interaction with salivary proteins was also analyzed by SDS-PAGE after wine ingestion during a sensory evaluation. Finally, the results from experimental data were compared with the results obtained by sensorial panel. 

Overall, it was concluded that wines clarified with YPE revealed a significant decrease in the majority of identified compounds related to bitterness and astringency. The study of wine color revealed that YPE had the ability to reduce yellow color of white wines and did not remove red color of red and rosé wines, which is an important aspect in consumption market. Besides the decreasing of several polyphenols related with taste perception, some relevant differences were observed in the salivary protein profile by SDS-PAGE. The results observed herein highlighted the relationship between (1) the taste perception, (2) the interaction between salivary proteins and wine polyphenols during the sensorial evaluation and (3) the effect of YPE fining in wine polyphenols. 

In summary, YPE reveals to be a good alternative to protein animal origin fining agents due to the ability to promote wine sensorial properties.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Telmo Francisco, Rosa Pérez, Susana Soares, Nuno Mateus, Victor Freitas, Adriana Xavier, Manuel Figueiredo, Filipe Centeno, Maria Teixeira

LAQV-REQUINTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto
PROENOL, Indústria Biotecnológica, Lda, Travessa das Lages nº267, Apto 547, Canelas, VNG 4405-194 Portugal

Contact the author

Keywords

fining, yeast protein extract, organoleptic properties, salivary proteins 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Ozalj- vivodina region is small vine growing area (only about 100 hectares of vineyards), but with significant number of old, ancient vineyards planted between 50 and 100 years ago. Trend of abandoning or replanting ancient vineyards takes place for the last 30 years. This trend results in grapevine germplasm erosion because traditional varieties are replaced with well known international varieties.Few known traditional varieties are dominantly present in ancient vineyards together with many others of unknown identity. Historical data about prevalence and characteristic of varieties on this area are very poor.

Towards microbiota-based disease management: analysis of grapevine microbiota in plots with contrasted levels of downy mildew infection

Vineyards harbor a myriad of microorganisms that interact with each other and with the grapevines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola that causes grapevine downy mildew. Others, such as plant growth promoting bacteria and disease biocontrol agents, have a positive influence on vine health. The present study aims to (1) investigate whether vine-based culture media increase the cultivability of the grapevine microbiota, in comparison to standard culture media and (2) identify and isolate bacterial taxa naturally present in grapevine leaves and significantly more abundant in plots showing low susceptibility to downy mildew.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Towards a sustainable winery: revalorization of green CO2 for methane production

The FUELPHORIA project explores innovative pathways for sustainable energy production, with DEMO 2 focused on transforming winery-derived CO₂ into methane (CH₄) using renewable hydrogen (H₂).