terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Abstract

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Drought leads to an impairment between growth and reserves which can be a key point in the survival of plantings. This work aims at understanding the role of non-structural carbohydrates (NSC) in: i) the maintenance of hydraulic function in cuttings subjected to water deficit and limited nitrogen: ii) identify the best regime of water and nitrogen to achieve a correct compromise between plant growth and NSC.

Cuttings of two different cultivars and three rootstocks of grapevine, were grown in pots under different water and nitrogen regimes. During the vegetative season, morphological and physiological traits were measured. Particularly, NSC content analysis were performed in roots, rootstocks, shoots and canes on blooming and on cane ripening period.

During early vegetative phases, plants under water deficit shown a reduced growth and lower water potential respect well-watered plants. At the end of the vegetative season, NSC was affected also by the type of cultivar or rootstock. Nitrogen does not seem to have any effect on carbohydrates content.

Our results suggest that imposing a controlled water deficit to grapevine from budburst, can support plants to accumulate NSC, useful to help cutting survival and face incoming drought events.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Pichierri A.1,2*, More Authors2: Gargiulo S.1,2, Sivilotti P. 2, De Luca E.3, Zambon Y. 3, Bruna M.2, Tomasin A.2, Casolo V. 2

1University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127 Trieste, Italy   
2University of Udine, Department of Food, Environmental, and Animal Sciences, Via delle Scienze 206, 33100 Udine, Italy
3VCR Research center, Via Ruggero Forti, 33095, San Giorgio della Richinvelda, Italy

Contact the author*

Keywords

woody crops, reserves, drought, nutritional deficit, plant survival

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.