terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Abstract

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Drought leads to an impairment between growth and reserves which can be a key point in the survival of plantings. This work aims at understanding the role of non-structural carbohydrates (NSC) in: i) the maintenance of hydraulic function in cuttings subjected to water deficit and limited nitrogen: ii) identify the best regime of water and nitrogen to achieve a correct compromise between plant growth and NSC.

Cuttings of two different cultivars and three rootstocks of grapevine, were grown in pots under different water and nitrogen regimes. During the vegetative season, morphological and physiological traits were measured. Particularly, NSC content analysis were performed in roots, rootstocks, shoots and canes on blooming and on cane ripening period.

During early vegetative phases, plants under water deficit shown a reduced growth and lower water potential respect well-watered plants. At the end of the vegetative season, NSC was affected also by the type of cultivar or rootstock. Nitrogen does not seem to have any effect on carbohydrates content.

Our results suggest that imposing a controlled water deficit to grapevine from budburst, can support plants to accumulate NSC, useful to help cutting survival and face incoming drought events.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Pichierri A.1,2*, More Authors2: Gargiulo S.1,2, Sivilotti P. 2, De Luca E.3, Zambon Y. 3, Bruna M.2, Tomasin A.2, Casolo V. 2

1University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127 Trieste, Italy   
2University of Udine, Department of Food, Environmental, and Animal Sciences, Via delle Scienze 206, 33100 Udine, Italy
3VCR Research center, Via Ruggero Forti, 33095, San Giorgio della Richinvelda, Italy

Contact the author*

Keywords

woody crops, reserves, drought, nutritional deficit, plant survival

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.