terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Abstract

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Drought leads to an impairment between growth and reserves which can be a key point in the survival of plantings. This work aims at understanding the role of non-structural carbohydrates (NSC) in: i) the maintenance of hydraulic function in cuttings subjected to water deficit and limited nitrogen: ii) identify the best regime of water and nitrogen to achieve a correct compromise between plant growth and NSC.

Cuttings of two different cultivars and three rootstocks of grapevine, were grown in pots under different water and nitrogen regimes. During the vegetative season, morphological and physiological traits were measured. Particularly, NSC content analysis were performed in roots, rootstocks, shoots and canes on blooming and on cane ripening period.

During early vegetative phases, plants under water deficit shown a reduced growth and lower water potential respect well-watered plants. At the end of the vegetative season, NSC was affected also by the type of cultivar or rootstock. Nitrogen does not seem to have any effect on carbohydrates content.

Our results suggest that imposing a controlled water deficit to grapevine from budburst, can support plants to accumulate NSC, useful to help cutting survival and face incoming drought events.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Pichierri A.1,2*, More Authors2: Gargiulo S.1,2, Sivilotti P. 2, De Luca E.3, Zambon Y. 3, Bruna M.2, Tomasin A.2, Casolo V. 2

1University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127 Trieste, Italy   
2University of Udine, Department of Food, Environmental, and Animal Sciences, Via delle Scienze 206, 33100 Udine, Italy
3VCR Research center, Via Ruggero Forti, 33095, San Giorgio della Richinvelda, Italy

Contact the author*

Keywords

woody crops, reserves, drought, nutritional deficit, plant survival

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

Combined use of leaf removal and natural shading to delay grape ripening in Manto negro (Vitis vinifera L.) under deficit irrigation 

The increasingly frequent heat waves during grape ripening pose challenges for premium wine grape production. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality.