OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Abstract

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]. Although studies have been performed using variable amounts of oxygen available to the wine during bottle ageing, the impacts of viticultural practices on ageing processes have been studied less. 

This research investigated the impacts of viticultural conditions (2 grape varieties, 2 vineyard locations and 2 fruit maturities) and variable bottle ageing conditions (3 oxygen availability regimes and 4 bottle ages) on red wine composition, with a particular focus on the production of aldehyde and sulfur-containing compounds in wine. Analysis of the total concentrations of the key aroma compounds was performed by LC-QQQ-MS (aldehyde compounds in their hydroxyalkylsulfonate forms), HS-GC-SCD (sulfur-containing compounds) and HS-SPME-GC-MS (esters, C6 compounds and terpenes). After 24-month of ageing, all of the measured sulfur-containing compounds showed increased concentrations in all wines. 

For the wines made from the same grape (i.e. same variety, vineyard and harvest date), the high oxygen availability treatments contained lower concentrations of sulfur-containing compounds compared to the low oxygen treatments. Generally, methional, 2-methylpropanal, 3-methylbutanal, 5-methylfurfural and furfural exhibited increased concentrations with time, while phenylacetaldehyde, benzaldehyde and hexanal showed decreased concentrations. 

Chemometrics analysis showed that based on the compositional analysis, samples could be separated primarily based on wine ageing and the viticultural conditions adopted. Regardless of the oxygen regimes or the ageing time during the bottle ageing, the samples could be always separated according to the viticultural conditions of the grape. These results indicate the importance of the viticultural conditions of the grape on the ageing of wine, despite the extent of ageing or oxygen exposure. 

[1] Ugliano, M. Oxygen contribution to wine aroma evolution during bottle aging. 2013. Journal of Agricultural and Food Chemistry. 61(26): 6125-6136. 

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Xinyi Zhang, Nikolaos Kontoudakis, Katja Šuklje, Guillaume Antalick, John Blackman, Andrew Clark

Charles Sturt University, National Wine and Grape Industry Centre Locked Bag 588 – Boorooma St. Wagga Wagga NSW 2678 – Australia

Contact the author

Keywords

bottle ageing, viticultural conditions, oxidative-reductive development 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Exploring the factors affecting spatio‐temporal variation in grapevine powdery mildew

The spatial distribution of powdery mildew is often heterogeneous between neighboring plots, with higher disease pressure in certain places

Pedicel lenticel diversity of cultivars and their influence on cell death and berry shrivel

Shrinking berries are the common symptoms of Berry Shrivel (BS) and Late-Season-Dehydration (LSD) in grapevine cultivars.

Automated detection of downy mildew in vineyards using explainable deep learning

Traditional methods for identifying downy mildew in commercial vineyards are often labour-intensive, subjective, and time-consuming.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

Soil monoliths, soil variability and terroir

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.