OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Abstract

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]. Although studies have been performed using variable amounts of oxygen available to the wine during bottle ageing, the impacts of viticultural practices on ageing processes have been studied less. 

This research investigated the impacts of viticultural conditions (2 grape varieties, 2 vineyard locations and 2 fruit maturities) and variable bottle ageing conditions (3 oxygen availability regimes and 4 bottle ages) on red wine composition, with a particular focus on the production of aldehyde and sulfur-containing compounds in wine. Analysis of the total concentrations of the key aroma compounds was performed by LC-QQQ-MS (aldehyde compounds in their hydroxyalkylsulfonate forms), HS-GC-SCD (sulfur-containing compounds) and HS-SPME-GC-MS (esters, C6 compounds and terpenes). After 24-month of ageing, all of the measured sulfur-containing compounds showed increased concentrations in all wines. 

For the wines made from the same grape (i.e. same variety, vineyard and harvest date), the high oxygen availability treatments contained lower concentrations of sulfur-containing compounds compared to the low oxygen treatments. Generally, methional, 2-methylpropanal, 3-methylbutanal, 5-methylfurfural and furfural exhibited increased concentrations with time, while phenylacetaldehyde, benzaldehyde and hexanal showed decreased concentrations. 

Chemometrics analysis showed that based on the compositional analysis, samples could be separated primarily based on wine ageing and the viticultural conditions adopted. Regardless of the oxygen regimes or the ageing time during the bottle ageing, the samples could be always separated according to the viticultural conditions of the grape. These results indicate the importance of the viticultural conditions of the grape on the ageing of wine, despite the extent of ageing or oxygen exposure. 

[1] Ugliano, M. Oxygen contribution to wine aroma evolution during bottle aging. 2013. Journal of Agricultural and Food Chemistry. 61(26): 6125-6136. 

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Xinyi Zhang, Nikolaos Kontoudakis, Katja Šuklje, Guillaume Antalick, John Blackman, Andrew Clark

Charles Sturt University, National Wine and Grape Industry Centre Locked Bag 588 – Boorooma St. Wagga Wagga NSW 2678 – Australia

Contact the author

Keywords

bottle ageing, viticultural conditions, oxidative-reductive development 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents.

Amyndeon‐naoussa: the two faces of Xinomavro

Xinomavro is the most important indigenous red wine variety grown in Northern Greece. It participates in the production of several PGI wines in Macedonia while from 100% Xinomavro the PDO “Amyndeon” and “Naoussa” are produced. The viticultural area of Amyndeon lies in a plateau of 550 ‐700 m of altitude, in a semi‐continental climate with mostly deep sandy loamy soils derived from limestone and marl bedrocks while in Naoussa, Xinomavro is grown in a Mediterranean climate on more heavy textured soils, sandy clay loam to clay, derived from ophiolithic, limestone and marl bedrocks, in an altitude which varies from 150 to 400 m. Different soil, climate and viticultural technique interactions, result in great variability with respect to morphological, ampelographical and physiological characters of Xinomavro as well as in the characteristics of the wines produced. 

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

A comparative analysis of regions worldwide with Pinot noir

This study examines the growing season climates of selected wine regions worldwide that have significant areas under Pinot noir.