OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Abstract

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]. Although studies have been performed using variable amounts of oxygen available to the wine during bottle ageing, the impacts of viticultural practices on ageing processes have been studied less. 

This research investigated the impacts of viticultural conditions (2 grape varieties, 2 vineyard locations and 2 fruit maturities) and variable bottle ageing conditions (3 oxygen availability regimes and 4 bottle ages) on red wine composition, with a particular focus on the production of aldehyde and sulfur-containing compounds in wine. Analysis of the total concentrations of the key aroma compounds was performed by LC-QQQ-MS (aldehyde compounds in their hydroxyalkylsulfonate forms), HS-GC-SCD (sulfur-containing compounds) and HS-SPME-GC-MS (esters, C6 compounds and terpenes). After 24-month of ageing, all of the measured sulfur-containing compounds showed increased concentrations in all wines. 

For the wines made from the same grape (i.e. same variety, vineyard and harvest date), the high oxygen availability treatments contained lower concentrations of sulfur-containing compounds compared to the low oxygen treatments. Generally, methional, 2-methylpropanal, 3-methylbutanal, 5-methylfurfural and furfural exhibited increased concentrations with time, while phenylacetaldehyde, benzaldehyde and hexanal showed decreased concentrations. 

Chemometrics analysis showed that based on the compositional analysis, samples could be separated primarily based on wine ageing and the viticultural conditions adopted. Regardless of the oxygen regimes or the ageing time during the bottle ageing, the samples could be always separated according to the viticultural conditions of the grape. These results indicate the importance of the viticultural conditions of the grape on the ageing of wine, despite the extent of ageing or oxygen exposure. 

[1] Ugliano, M. Oxygen contribution to wine aroma evolution during bottle aging. 2013. Journal of Agricultural and Food Chemistry. 61(26): 6125-6136. 

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Xinyi Zhang, Nikolaos Kontoudakis, Katja Šuklje, Guillaume Antalick, John Blackman, Andrew Clark

Charles Sturt University, National Wine and Grape Industry Centre Locked Bag 588 – Boorooma St. Wagga Wagga NSW 2678 – Australia

Contact the author

Keywords

bottle ageing, viticultural conditions, oxidative-reductive development 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones.

Identification of key-odorants in Sauternes Wines

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD).

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process.

Characterization of the mechanisms underlying the tolerance of genotypes of Uva Cão to climate change: A transcriptomic and genomic study

Climate change has been influencing viticulture and changing wine profiles in the past years, and effects are expected to get worse.