OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Abstract

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]. Although studies have been performed using variable amounts of oxygen available to the wine during bottle ageing, the impacts of viticultural practices on ageing processes have been studied less. 

This research investigated the impacts of viticultural conditions (2 grape varieties, 2 vineyard locations and 2 fruit maturities) and variable bottle ageing conditions (3 oxygen availability regimes and 4 bottle ages) on red wine composition, with a particular focus on the production of aldehyde and sulfur-containing compounds in wine. Analysis of the total concentrations of the key aroma compounds was performed by LC-QQQ-MS (aldehyde compounds in their hydroxyalkylsulfonate forms), HS-GC-SCD (sulfur-containing compounds) and HS-SPME-GC-MS (esters, C6 compounds and terpenes). After 24-month of ageing, all of the measured sulfur-containing compounds showed increased concentrations in all wines. 

For the wines made from the same grape (i.e. same variety, vineyard and harvest date), the high oxygen availability treatments contained lower concentrations of sulfur-containing compounds compared to the low oxygen treatments. Generally, methional, 2-methylpropanal, 3-methylbutanal, 5-methylfurfural and furfural exhibited increased concentrations with time, while phenylacetaldehyde, benzaldehyde and hexanal showed decreased concentrations. 

Chemometrics analysis showed that based on the compositional analysis, samples could be separated primarily based on wine ageing and the viticultural conditions adopted. Regardless of the oxygen regimes or the ageing time during the bottle ageing, the samples could be always separated according to the viticultural conditions of the grape. These results indicate the importance of the viticultural conditions of the grape on the ageing of wine, despite the extent of ageing or oxygen exposure. 

[1] Ugliano, M. Oxygen contribution to wine aroma evolution during bottle aging. 2013. Journal of Agricultural and Food Chemistry. 61(26): 6125-6136. 

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Xinyi Zhang, Nikolaos Kontoudakis, Katja Šuklje, Guillaume Antalick, John Blackman, Andrew Clark

Charles Sturt University, National Wine and Grape Industry Centre Locked Bag 588 – Boorooma St. Wagga Wagga NSW 2678 – Australia

Contact the author

Keywords

bottle ageing, viticultural conditions, oxidative-reductive development 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The role of vine trunk height in delaying grape ripening: insights for viticultural adaptation strategies

Global changes in temperature patterns necessitate the development of viticultural adaptation strategies. One promising approach involves modifying the training system and elevating trunk height. This study explored the potential of raising the vine trunk as an adaptive strategy to counteract the effects of increasing temperatures and delay ripening. Thermal conditions, radiation levels, and must composition were measured at different heights (10 and 150 cm) in a commercial vineyard of the minority variety Maturana Blanca, trained on a vertical cordon.

Effect of Botrytis cinerea and esca on phenolic composition of berries and wines

This study showed that Botrytis cinerea could degrade the phenolic compounds by its enzymatic activity. It led to a diminution of skin’s anthocyanins from 20 % to 50 % and an increase level up to 40 % of individual proanthocyanins, 30 % of the %G and 25% of the %P.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Grapevine root system architecture: empirical insights and first steps towards in silico studies

Root System Architecture (RSA) is crucial for plant resilience and resource uptake, yet remains underexplored in viticulture.

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.