terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Abstract

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5]. The aim of this work was to study the degradation kinetics of the five grape anthocyanins by laccase from Botrytis cinerea. In individual solution, the three anthocyanins with 3 substituents in the B-ring: petunidin, delphinidin and malvidin were degraded much faster than those of 2 substituents, cyanidin and especially peonidin that is even not degraded by laccase. In contrast, in an equimolar solution of the 5 anthocyanins, the degradation kinetics of all anthocyanins was more similar and all of them, even peonidin were degraded. This different kinetics behavior of the five anthocyanins when they are alone or in mixture may be probably due to the fact that, after the formation of the primary quinones, chemical polymerization occurs with other phenols without the action of laccase. Consequently, the less reactive anthocyanins, such as peonidin and cyanidin 3-O-glucosides, can be used to form polymers without the action of laccase. This effect would probably also occur in the presence of other phenols, which could generate insoluble polymers that would cause oxidasic haze.

Acknowledgements: This research was funded by CICYT project RTI2018-095658-B-C33.

References:

1)  Li H. et al. (2008) Mechanisms of oxidative browning of wine. Food. Chem., 108:1-13, DOI 10.1016/j.foodchem.2007.10.065

2)  Friedman M (1996) Food browning and its prevention: an overview. J. Agric. Food Chem., 44:631-653, DOI 10.1021/JF950394R

3)  du Toit WJ. et al. (2006) Oxygen in must and wine: a review. S. Afr. J. Enol. Vitic., 27:76-94, DOI 10.21548/27-1-1610

4)  Ky I. et al. (2012) Assessment of grey mould (Botrytis cinerea) impact on phenolic and sensory quality of Bordeaux grapes, musts and wines for two consecutive vintages. Aust. J. Grape Wine Res., 18:215-226, DOI 10.1111/j.1755-0238.2012.00191.x

5)  Ribéreau-Gayon P. et al. (2006) The microbiology of wine and vinifications, 2nd edn. John Wiley & Sons, Chichester, pp 193–221, ISBN-13:978-0-470-01034-1(HB)

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Pol Giménez1, Arnau Just-Borràs1, Jordi Gombau1, Joan M. Canals1, Fernando Zamora1*

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain

Contact the author*

Keywords

laccase, Botrytis cinerea, anthocyanins, browning, oxidasic haze

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.