terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Abstract

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5]. The aim of this work was to study the degradation kinetics of the five grape anthocyanins by laccase from Botrytis cinerea. In individual solution, the three anthocyanins with 3 substituents in the B-ring: petunidin, delphinidin and malvidin were degraded much faster than those of 2 substituents, cyanidin and especially peonidin that is even not degraded by laccase. In contrast, in an equimolar solution of the 5 anthocyanins, the degradation kinetics of all anthocyanins was more similar and all of them, even peonidin were degraded. This different kinetics behavior of the five anthocyanins when they are alone or in mixture may be probably due to the fact that, after the formation of the primary quinones, chemical polymerization occurs with other phenols without the action of laccase. Consequently, the less reactive anthocyanins, such as peonidin and cyanidin 3-O-glucosides, can be used to form polymers without the action of laccase. This effect would probably also occur in the presence of other phenols, which could generate insoluble polymers that would cause oxidasic haze.

Acknowledgements: This research was funded by CICYT project RTI2018-095658-B-C33.

References:

1)  Li H. et al. (2008) Mechanisms of oxidative browning of wine. Food. Chem., 108:1-13, DOI 10.1016/j.foodchem.2007.10.065

2)  Friedman M (1996) Food browning and its prevention: an overview. J. Agric. Food Chem., 44:631-653, DOI 10.1021/JF950394R

3)  du Toit WJ. et al. (2006) Oxygen in must and wine: a review. S. Afr. J. Enol. Vitic., 27:76-94, DOI 10.21548/27-1-1610

4)  Ky I. et al. (2012) Assessment of grey mould (Botrytis cinerea) impact on phenolic and sensory quality of Bordeaux grapes, musts and wines for two consecutive vintages. Aust. J. Grape Wine Res., 18:215-226, DOI 10.1111/j.1755-0238.2012.00191.x

5)  Ribéreau-Gayon P. et al. (2006) The microbiology of wine and vinifications, 2nd edn. John Wiley & Sons, Chichester, pp 193–221, ISBN-13:978-0-470-01034-1(HB)

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Pol Giménez1, Arnau Just-Borràs1, Jordi Gombau1, Joan M. Canals1, Fernando Zamora1*

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain

Contact the author*

Keywords

laccase, Botrytis cinerea, anthocyanins, browning, oxidasic haze

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Acceptability of canned wines: effect of the level of involvement of consumers and type of wine

In recent years there has been a growing demand for alternative packaging designs in the food industry focused on diminishing the carbon footprint. Despite the environmental advantages of cans versus bottles, the traditional environment of wine has hindered the establishment of less contaminant containers. In this context, the objective of this study was to understand and generate knowledge about consumers´ perception of canned wines in comparison to bottled wines.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.