terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Abstract

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5]. The aim of this work was to study the degradation kinetics of the five grape anthocyanins by laccase from Botrytis cinerea. In individual solution, the three anthocyanins with 3 substituents in the B-ring: petunidin, delphinidin and malvidin were degraded much faster than those of 2 substituents, cyanidin and especially peonidin that is even not degraded by laccase. In contrast, in an equimolar solution of the 5 anthocyanins, the degradation kinetics of all anthocyanins was more similar and all of them, even peonidin were degraded. This different kinetics behavior of the five anthocyanins when they are alone or in mixture may be probably due to the fact that, after the formation of the primary quinones, chemical polymerization occurs with other phenols without the action of laccase. Consequently, the less reactive anthocyanins, such as peonidin and cyanidin 3-O-glucosides, can be used to form polymers without the action of laccase. This effect would probably also occur in the presence of other phenols, which could generate insoluble polymers that would cause oxidasic haze.

Acknowledgements: This research was funded by CICYT project RTI2018-095658-B-C33.

References:

1)  Li H. et al. (2008) Mechanisms of oxidative browning of wine. Food. Chem., 108:1-13, DOI 10.1016/j.foodchem.2007.10.065

2)  Friedman M (1996) Food browning and its prevention: an overview. J. Agric. Food Chem., 44:631-653, DOI 10.1021/JF950394R

3)  du Toit WJ. et al. (2006) Oxygen in must and wine: a review. S. Afr. J. Enol. Vitic., 27:76-94, DOI 10.21548/27-1-1610

4)  Ky I. et al. (2012) Assessment of grey mould (Botrytis cinerea) impact on phenolic and sensory quality of Bordeaux grapes, musts and wines for two consecutive vintages. Aust. J. Grape Wine Res., 18:215-226, DOI 10.1111/j.1755-0238.2012.00191.x

5)  Ribéreau-Gayon P. et al. (2006) The microbiology of wine and vinifications, 2nd edn. John Wiley & Sons, Chichester, pp 193–221, ISBN-13:978-0-470-01034-1(HB)

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Pol Giménez1, Arnau Just-Borràs1, Jordi Gombau1, Joan M. Canals1, Fernando Zamora1*

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain

Contact the author*

Keywords

laccase, Botrytis cinerea, anthocyanins, browning, oxidasic haze

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.