terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Sensory profile of wines obtained from disease-resistant varieties in La Rioja

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

Abstract

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.

In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.

The sensory profile of the wines was obtained by sorting task carried out with 25 wine experts. All microvinifications were presented together with reference varieties* (Sauvignon Blanc and Friuliano for whites and Merlot, Cabernet Sauvignon and Regent for reds). Results showed a very diverse sensorial space, which could be compared with the references. A clustering of the reference varieties with some of the wines elaborated with the studied disease-resistant varieties confirms shared sensory profiles. The results will shed light on the viability of disease-resistant varieties within the DOCa Rioja in the near future.

Acknowledgements: This work has been funded by the Government of La Rioja, through project Fortalece 2021/08. The collaboration of the staff at CIDA and ICVV winery is gratefully acknowledged.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Sara I. Blanco González*, M. Pilar Sáenz-Navajas, Carolina Castillo, María M. Hernández, and Cristina M. Menéndez

Instituto de Ciencias de la Vid y el Vino (ICVV (GR-CSIC-UR)), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain

Contact the author*

Keywords

PIWIS, powdery mildew, downy mildew, sustainable viticulture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes.