terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Abstract

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

In our research, we focused on eight 14-year-old Vitis vinifera cv. grape varieties from the same plot (VITADAPT program, 2022 vintage): Cabernet Franc, Cabernet Sauvignon, Carménère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional. Grape berries were harvested on five stages i.e. mid-véraison (MV), half-maturity (MM), 7 days before maturity (M-7), maturity (M), and 10 days post-maturity (M+10) and microvinifications were conducted on the three last stages. In this study, we aim to use high-throughput profiling techniques for an in-depth metabolite analysis[2]. We selected targeted analysis (GC/MS) for known aroma families (such as lactone, furanones, carbonyls, methoxypyrazines…) and untargeted (GCxGC TOF MS) metabolomics analysis and computational methods, including multivariate data analysis for detecting aromatic families extensively. The processing of spectral data, identifying variations, and cross-referencing GC/MS values will be integral parts of our methodology. Concurrently, we also assessed various climate variables to understand their impact on grape composition and the sensory characteristics of the wine produced.

Our approach will refine the impact of harvest date according to known climatic variables on the expression of metabolite and metabolic pathways due to environmental and genotypic variations. This comprehensive metabolomic analysis is aimed at deepening our understanding of berry, must and wine aroma composition and their metabolite pathways, ultimately enhancing their quality and value.

References:

1)  Pons A, et al. (2017) What is the expected impact of climate change on wine aroma compounds and         their precursors in grape? OENO One, 51(2): 141–146. DOI10.20870/oeno-one.2017.51.2.1868

2)  Gao B, et al. (2019) Opportunities and challenges using non-targeted methods for food fraud detection. Journal of agricultural and food chemistry, 67: 8425-8430.

This study received financial support from the French government in the framework of the IdEX Bordeaux University “Investments for the Future” program / GPR Bordeaux Plant Sciences. We thank the INRAe BAP and TRANSFORM departments for the financial support of the CARMA project.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Jacqueline SANTOS1*, Alexia BAÏRI1, Agnès DESTRAC-IRVINE1, Maria LAFARGUE1, Sylvain PRIGENT, Cécile THIBON2, Sabine GUILLAUMIE1, Alexandre PONS2,3

1EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV, F-33140 Villenave d’Ornon, France
3Seguin Moreau cooperage, ZI merpins, 16103 Cognac, France

Contact the author*

Keywords

climate change, aromatic compounds, untargeted analysis, metabolite association network, grapevine metabolome

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.