terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Abstract

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

In our research, we focused on eight 14-year-old Vitis vinifera cv. grape varieties from the same plot (VITADAPT program, 2022 vintage): Cabernet Franc, Cabernet Sauvignon, Carménère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional. Grape berries were harvested on five stages i.e. mid-véraison (MV), half-maturity (MM), 7 days before maturity (M-7), maturity (M), and 10 days post-maturity (M+10) and microvinifications were conducted on the three last stages. In this study, we aim to use high-throughput profiling techniques for an in-depth metabolite analysis[2]. We selected targeted analysis (GC/MS) for known aroma families (such as lactone, furanones, carbonyls, methoxypyrazines…) and untargeted (GCxGC TOF MS) metabolomics analysis and computational methods, including multivariate data analysis for detecting aromatic families extensively. The processing of spectral data, identifying variations, and cross-referencing GC/MS values will be integral parts of our methodology. Concurrently, we also assessed various climate variables to understand their impact on grape composition and the sensory characteristics of the wine produced.

Our approach will refine the impact of harvest date according to known climatic variables on the expression of metabolite and metabolic pathways due to environmental and genotypic variations. This comprehensive metabolomic analysis is aimed at deepening our understanding of berry, must and wine aroma composition and their metabolite pathways, ultimately enhancing their quality and value.

References:

1)  Pons A, et al. (2017) What is the expected impact of climate change on wine aroma compounds and         their precursors in grape? OENO One, 51(2): 141–146. DOI10.20870/oeno-one.2017.51.2.1868

2)  Gao B, et al. (2019) Opportunities and challenges using non-targeted methods for food fraud detection. Journal of agricultural and food chemistry, 67: 8425-8430.

This study received financial support from the French government in the framework of the IdEX Bordeaux University “Investments for the Future” program / GPR Bordeaux Plant Sciences. We thank the INRAe BAP and TRANSFORM departments for the financial support of the CARMA project.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Jacqueline SANTOS1*, Alexia BAÏRI1, Agnès DESTRAC-IRVINE1, Maria LAFARGUE1, Sylvain PRIGENT, Cécile THIBON2, Sabine GUILLAUMIE1, Alexandre PONS2,3

1EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV, F-33140 Villenave d’Ornon, France
3Seguin Moreau cooperage, ZI merpins, 16103 Cognac, France

Contact the author*

Keywords

climate change, aromatic compounds, untargeted analysis, metabolite association network, grapevine metabolome

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.