terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Abstract

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

In our research, we focused on eight 14-year-old Vitis vinifera cv. grape varieties from the same plot (VITADAPT program, 2022 vintage): Cabernet Franc, Cabernet Sauvignon, Carménère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional. Grape berries were harvested on five stages i.e. mid-véraison (MV), half-maturity (MM), 7 days before maturity (M-7), maturity (M), and 10 days post-maturity (M+10) and microvinifications were conducted on the three last stages. In this study, we aim to use high-throughput profiling techniques for an in-depth metabolite analysis[2]. We selected targeted analysis (GC/MS) for known aroma families (such as lactone, furanones, carbonyls, methoxypyrazines…) and untargeted (GCxGC TOF MS) metabolomics analysis and computational methods, including multivariate data analysis for detecting aromatic families extensively. The processing of spectral data, identifying variations, and cross-referencing GC/MS values will be integral parts of our methodology. Concurrently, we also assessed various climate variables to understand their impact on grape composition and the sensory characteristics of the wine produced.

Our approach will refine the impact of harvest date according to known climatic variables on the expression of metabolite and metabolic pathways due to environmental and genotypic variations. This comprehensive metabolomic analysis is aimed at deepening our understanding of berry, must and wine aroma composition and their metabolite pathways, ultimately enhancing their quality and value.

References:

1)  Pons A, et al. (2017) What is the expected impact of climate change on wine aroma compounds and         their precursors in grape? OENO One, 51(2): 141–146. DOI10.20870/oeno-one.2017.51.2.1868

2)  Gao B, et al. (2019) Opportunities and challenges using non-targeted methods for food fraud detection. Journal of agricultural and food chemistry, 67: 8425-8430.

This study received financial support from the French government in the framework of the IdEX Bordeaux University “Investments for the Future” program / GPR Bordeaux Plant Sciences. We thank the INRAe BAP and TRANSFORM departments for the financial support of the CARMA project.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Jacqueline SANTOS1*, Alexia BAÏRI1, Agnès DESTRAC-IRVINE1, Maria LAFARGUE1, Sylvain PRIGENT, Cécile THIBON2, Sabine GUILLAUMIE1, Alexandre PONS2,3

1EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV, F-33140 Villenave d’Ornon, France
3Seguin Moreau cooperage, ZI merpins, 16103 Cognac, France

Contact the author*

Keywords

climate change, aromatic compounds, untargeted analysis, metabolite association network, grapevine metabolome

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Characterization of non-cultivated wild grapevines in Extremadura (Spain) 

Several Eurasian wild grapevine populations were found along Extremadura region (southwestern Spain). For conservation and study, one individual from four different populations (named L1, L2, L5 and L6) was vegetatively propagated and planted at Instituto de Investigaciones Agrarias Finca La Orden (CICYTEX), Badajoz. The aim of the present work was to characterize those conserved individuals from four different populations based on both an ampelographic description and a molecular analysis. Three vines per individual were studied.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.