terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Abstract

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

In our research, we focused on eight 14-year-old Vitis vinifera cv. grape varieties from the same plot (VITADAPT program, 2022 vintage): Cabernet Franc, Cabernet Sauvignon, Carménère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional. Grape berries were harvested on five stages i.e. mid-véraison (MV), half-maturity (MM), 7 days before maturity (M-7), maturity (M), and 10 days post-maturity (M+10) and microvinifications were conducted on the three last stages. In this study, we aim to use high-throughput profiling techniques for an in-depth metabolite analysis[2]. We selected targeted analysis (GC/MS) for known aroma families (such as lactone, furanones, carbonyls, methoxypyrazines…) and untargeted (GCxGC TOF MS) metabolomics analysis and computational methods, including multivariate data analysis for detecting aromatic families extensively. The processing of spectral data, identifying variations, and cross-referencing GC/MS values will be integral parts of our methodology. Concurrently, we also assessed various climate variables to understand their impact on grape composition and the sensory characteristics of the wine produced.

Our approach will refine the impact of harvest date according to known climatic variables on the expression of metabolite and metabolic pathways due to environmental and genotypic variations. This comprehensive metabolomic analysis is aimed at deepening our understanding of berry, must and wine aroma composition and their metabolite pathways, ultimately enhancing their quality and value.

References:

1)  Pons A, et al. (2017) What is the expected impact of climate change on wine aroma compounds and         their precursors in grape? OENO One, 51(2): 141–146. DOI10.20870/oeno-one.2017.51.2.1868

2)  Gao B, et al. (2019) Opportunities and challenges using non-targeted methods for food fraud detection. Journal of agricultural and food chemistry, 67: 8425-8430.

This study received financial support from the French government in the framework of the IdEX Bordeaux University “Investments for the Future” program / GPR Bordeaux Plant Sciences. We thank the INRAe BAP and TRANSFORM departments for the financial support of the CARMA project.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Jacqueline SANTOS1*, Alexia BAÏRI1, Agnès DESTRAC-IRVINE1, Maria LAFARGUE1, Sylvain PRIGENT, Cécile THIBON2, Sabine GUILLAUMIE1, Alexandre PONS2,3

1EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV, F-33140 Villenave d’Ornon, France
3Seguin Moreau cooperage, ZI merpins, 16103 Cognac, France

Contact the author*

Keywords

climate change, aromatic compounds, untargeted analysis, metabolite association network, grapevine metabolome

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Wine produced under Designation of Origin (DOP) Ribeiro, the oldest DOP in Galicia (NW Spain), are elaborated using local grape cultivars, grown at the valleys of Miño, Avia and Arnoia rivers. The landscape formed by slopes and terraces and the peculiar climate of continental character, softened by the proximity of Atlantic Ocean, make it an area of excellent aptitude for vine cultivation. In addition, small-scale farming and the use of traditional techniques for vineyard management provide a great diversity to Ribeiro wines. This study presents the evaluation of red and white wines (bottled or bulk wines) from DOP Ribeiro, produced between years 2018-2022.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.