terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Abstract

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

In our research, we focused on eight 14-year-old Vitis vinifera cv. grape varieties from the same plot (VITADAPT program, 2022 vintage): Cabernet Franc, Cabernet Sauvignon, Carménère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional. Grape berries were harvested on five stages i.e. mid-véraison (MV), half-maturity (MM), 7 days before maturity (M-7), maturity (M), and 10 days post-maturity (M+10) and microvinifications were conducted on the three last stages. In this study, we aim to use high-throughput profiling techniques for an in-depth metabolite analysis[2]. We selected targeted analysis (GC/MS) for known aroma families (such as lactone, furanones, carbonyls, methoxypyrazines…) and untargeted (GCxGC TOF MS) metabolomics analysis and computational methods, including multivariate data analysis for detecting aromatic families extensively. The processing of spectral data, identifying variations, and cross-referencing GC/MS values will be integral parts of our methodology. Concurrently, we also assessed various climate variables to understand their impact on grape composition and the sensory characteristics of the wine produced.

Our approach will refine the impact of harvest date according to known climatic variables on the expression of metabolite and metabolic pathways due to environmental and genotypic variations. This comprehensive metabolomic analysis is aimed at deepening our understanding of berry, must and wine aroma composition and their metabolite pathways, ultimately enhancing their quality and value.

References:

1)  Pons A, et al. (2017) What is the expected impact of climate change on wine aroma compounds and         their precursors in grape? OENO One, 51(2): 141–146. DOI10.20870/oeno-one.2017.51.2.1868

2)  Gao B, et al. (2019) Opportunities and challenges using non-targeted methods for food fraud detection. Journal of agricultural and food chemistry, 67: 8425-8430.

This study received financial support from the French government in the framework of the IdEX Bordeaux University “Investments for the Future” program / GPR Bordeaux Plant Sciences. We thank the INRAe BAP and TRANSFORM departments for the financial support of the CARMA project.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Jacqueline SANTOS1*, Alexia BAÏRI1, Agnès DESTRAC-IRVINE1, Maria LAFARGUE1, Sylvain PRIGENT, Cécile THIBON2, Sabine GUILLAUMIE1, Alexandre PONS2,3

1EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV, F-33140 Villenave d’Ornon, France
3Seguin Moreau cooperage, ZI merpins, 16103 Cognac, France

Contact the author*

Keywords

climate change, aromatic compounds, untargeted analysis, metabolite association network, grapevine metabolome

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.