terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Abstract

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

 

The AWRI has developed a world-first clonal sequencing methodology that combines the latest next-generation genome sequencing technologies, high-performance computing and customised bioinformatics tools. This technique has been successfully used to define clonal variation across 1000 accessions of 20 different cultivars obtained from nurseries and vineyards throughout Australia.

 

To aid in the phylogenetic analysis and identification of intra-cultivar somatic mutations, long-read reference genomes were produced for several cultivars, including Shiraz, Grenache and Sauvignon Blanc. These reference genomes were also used to detect unique structural variations that may be important drivers of the phenotypic differences observed between these cultivars.

Acknowledgements: This work was supported by Wine Australia, with levies from Australia’s grapegrowers and winemakers and matching funds from the Australian Government. Support for DNA sequencing was provided by Bioplatforms Australia as part of the National Collaborative Research Infrastructure Strategy, an initiative of the Australian Government. The AWRI is a member of the Wine Innovation Cluster (WIC) in Adelaide.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Cristobal Onetto1*, Christopher Ward1, Steven Van Den Heuvel1, Simon Schmidt1, Anthony Borneman1

1The Australian Wine Research Institute, Glen Osmond, South Australia, Australia

Contact the author*

Keywords

grapevine, germplasm, clonal identification, whole genome sequencing

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.