terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Abstract

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening. In this study, we examined a loose bunch somatic variant of Tempranillo Tinto cultivar (TT) to elucidate the molecular basis underlying this variation. The variant displayed a masculinized flower phenotype, characterized by an underdeveloped yet functional gynoecium, with reduced development of the style, stigma and septum, as compared to the complete hermaphroditic flowers typically observed in TT. Genetic analysis of its self-progeny demonstrated the co-segregation of the masculinized flower phenotype with the hermaphrodite allele of the grape sex locus (SDR)[1]. While genome re-sequencing did not identify any genetic variation within the SDR locus, an RNA-seq analysis identified one SDR-located gene over-expressed in the somatic variant compared to a control TT clone. The hermaphrodite allele was specifically over-expressed in the variant. Both Illumina WGBS and Nanopore epigenomic analyses identified a hermaphrodite allele-specific hyper-methylated region upstream of the upregulated gene. Analysis of chromatin conformation capture (3C) revealed a three-dimensional rearrangement of the locus, including the presence of a novel 36 kb chromatin loop delimiting the hyper-methylated region, which could be responsible for the over-expression and the phenotype. These findings indicate that somatic epi-alleles in the SDR locus can determine variation in gynoecium development leading to decreased fruit set and looser bunches in grapevine.

Acknowledgements: This study is part of the projects BIO-2017-86375-R and PID2020-120183RB-I00, and PRE-2018-086017 grant funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This study is also part of the vWISE project.

1)  Massonnet, M., Cochetel, N., Minio, A., Vondras, A. M., Lin, J., Muyle, A., Garcia, J. F., Zhou, Y., Delledonne, M., Riaz, S., Figueroa-Balderas, R., Gaut, B. S., & Cantu, D. (2020). The genetic basis of sex determination in grapes. Nature Communications, 11(1), 1–12. DOI: 10.1038/s41467-020-16700-z

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alañón, Noelia1*; Ferradás, Yolanda2; Lijavetzky, Diego3; Ferrero, Lucía4; Martínez-Zapater, José Miguel1; Ariel, Federico4; Carbonell-Bejerano, Pablo1; Ibáñez, Javier1

1 Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-CAR-UR), Departamento de Viticultura, Logroño, Spain
2 Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
3 Instituto de Biología Agrícola de Mendoza (IBAM), CONICET, FCA-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
4 Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168km 0, 3000, Santa Fe, Argentina

Contact the author*

Keywords

bunch compactness, somatic variation, flower development, chromatin conformation, epiallele

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.