terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Abstract

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening. In this study, we examined a loose bunch somatic variant of Tempranillo Tinto cultivar (TT) to elucidate the molecular basis underlying this variation. The variant displayed a masculinized flower phenotype, characterized by an underdeveloped yet functional gynoecium, with reduced development of the style, stigma and septum, as compared to the complete hermaphroditic flowers typically observed in TT. Genetic analysis of its self-progeny demonstrated the co-segregation of the masculinized flower phenotype with the hermaphrodite allele of the grape sex locus (SDR)[1]. While genome re-sequencing did not identify any genetic variation within the SDR locus, an RNA-seq analysis identified one SDR-located gene over-expressed in the somatic variant compared to a control TT clone. The hermaphrodite allele was specifically over-expressed in the variant. Both Illumina WGBS and Nanopore epigenomic analyses identified a hermaphrodite allele-specific hyper-methylated region upstream of the upregulated gene. Analysis of chromatin conformation capture (3C) revealed a three-dimensional rearrangement of the locus, including the presence of a novel 36 kb chromatin loop delimiting the hyper-methylated region, which could be responsible for the over-expression and the phenotype. These findings indicate that somatic epi-alleles in the SDR locus can determine variation in gynoecium development leading to decreased fruit set and looser bunches in grapevine.

Acknowledgements: This study is part of the projects BIO-2017-86375-R and PID2020-120183RB-I00, and PRE-2018-086017 grant funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This study is also part of the vWISE project.

1)  Massonnet, M., Cochetel, N., Minio, A., Vondras, A. M., Lin, J., Muyle, A., Garcia, J. F., Zhou, Y., Delledonne, M., Riaz, S., Figueroa-Balderas, R., Gaut, B. S., & Cantu, D. (2020). The genetic basis of sex determination in grapes. Nature Communications, 11(1), 1–12. DOI: 10.1038/s41467-020-16700-z

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alañón, Noelia1*; Ferradás, Yolanda2; Lijavetzky, Diego3; Ferrero, Lucía4; Martínez-Zapater, José Miguel1; Ariel, Federico4; Carbonell-Bejerano, Pablo1; Ibáñez, Javier1

1 Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-CAR-UR), Departamento de Viticultura, Logroño, Spain
2 Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
3 Instituto de Biología Agrícola de Mendoza (IBAM), CONICET, FCA-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
4 Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168km 0, 3000, Santa Fe, Argentina

Contact the author*

Keywords

bunch compactness, somatic variation, flower development, chromatin conformation, epiallele

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.