terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Abstract

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening. In this study, we examined a loose bunch somatic variant of Tempranillo Tinto cultivar (TT) to elucidate the molecular basis underlying this variation. The variant displayed a masculinized flower phenotype, characterized by an underdeveloped yet functional gynoecium, with reduced development of the style, stigma and septum, as compared to the complete hermaphroditic flowers typically observed in TT. Genetic analysis of its self-progeny demonstrated the co-segregation of the masculinized flower phenotype with the hermaphrodite allele of the grape sex locus (SDR)[1]. While genome re-sequencing did not identify any genetic variation within the SDR locus, an RNA-seq analysis identified one SDR-located gene over-expressed in the somatic variant compared to a control TT clone. The hermaphrodite allele was specifically over-expressed in the variant. Both Illumina WGBS and Nanopore epigenomic analyses identified a hermaphrodite allele-specific hyper-methylated region upstream of the upregulated gene. Analysis of chromatin conformation capture (3C) revealed a three-dimensional rearrangement of the locus, including the presence of a novel 36 kb chromatin loop delimiting the hyper-methylated region, which could be responsible for the over-expression and the phenotype. These findings indicate that somatic epi-alleles in the SDR locus can determine variation in gynoecium development leading to decreased fruit set and looser bunches in grapevine.

Acknowledgements: This study is part of the projects BIO-2017-86375-R and PID2020-120183RB-I00, and PRE-2018-086017 grant funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This study is also part of the vWISE project.

1)  Massonnet, M., Cochetel, N., Minio, A., Vondras, A. M., Lin, J., Muyle, A., Garcia, J. F., Zhou, Y., Delledonne, M., Riaz, S., Figueroa-Balderas, R., Gaut, B. S., & Cantu, D. (2020). The genetic basis of sex determination in grapes. Nature Communications, 11(1), 1–12. DOI: 10.1038/s41467-020-16700-z

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alañón, Noelia1*; Ferradás, Yolanda2; Lijavetzky, Diego3; Ferrero, Lucía4; Martínez-Zapater, José Miguel1; Ariel, Federico4; Carbonell-Bejerano, Pablo1; Ibáñez, Javier1

1 Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-CAR-UR), Departamento de Viticultura, Logroño, Spain
2 Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
3 Instituto de Biología Agrícola de Mendoza (IBAM), CONICET, FCA-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
4 Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168km 0, 3000, Santa Fe, Argentina

Contact the author*

Keywords

bunch compactness, somatic variation, flower development, chromatin conformation, epiallele

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.