terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Abstract

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening. In this study, we examined a loose bunch somatic variant of Tempranillo Tinto cultivar (TT) to elucidate the molecular basis underlying this variation. The variant displayed a masculinized flower phenotype, characterized by an underdeveloped yet functional gynoecium, with reduced development of the style, stigma and septum, as compared to the complete hermaphroditic flowers typically observed in TT. Genetic analysis of its self-progeny demonstrated the co-segregation of the masculinized flower phenotype with the hermaphrodite allele of the grape sex locus (SDR)[1]. While genome re-sequencing did not identify any genetic variation within the SDR locus, an RNA-seq analysis identified one SDR-located gene over-expressed in the somatic variant compared to a control TT clone. The hermaphrodite allele was specifically over-expressed in the variant. Both Illumina WGBS and Nanopore epigenomic analyses identified a hermaphrodite allele-specific hyper-methylated region upstream of the upregulated gene. Analysis of chromatin conformation capture (3C) revealed a three-dimensional rearrangement of the locus, including the presence of a novel 36 kb chromatin loop delimiting the hyper-methylated region, which could be responsible for the over-expression and the phenotype. These findings indicate that somatic epi-alleles in the SDR locus can determine variation in gynoecium development leading to decreased fruit set and looser bunches in grapevine.

Acknowledgements: This study is part of the projects BIO-2017-86375-R and PID2020-120183RB-I00, and PRE-2018-086017 grant funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This study is also part of the vWISE project.

1)  Massonnet, M., Cochetel, N., Minio, A., Vondras, A. M., Lin, J., Muyle, A., Garcia, J. F., Zhou, Y., Delledonne, M., Riaz, S., Figueroa-Balderas, R., Gaut, B. S., & Cantu, D. (2020). The genetic basis of sex determination in grapes. Nature Communications, 11(1), 1–12. DOI: 10.1038/s41467-020-16700-z

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alañón, Noelia1*; Ferradás, Yolanda2; Lijavetzky, Diego3; Ferrero, Lucía4; Martínez-Zapater, José Miguel1; Ariel, Federico4; Carbonell-Bejerano, Pablo1; Ibáñez, Javier1

1 Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-CAR-UR), Departamento de Viticultura, Logroño, Spain
2 Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
3 Instituto de Biología Agrícola de Mendoza (IBAM), CONICET, FCA-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
4 Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168km 0, 3000, Santa Fe, Argentina

Contact the author*

Keywords

bunch compactness, somatic variation, flower development, chromatin conformation, epiallele

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.