terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Abstract

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening. In this study, we examined a loose bunch somatic variant of Tempranillo Tinto cultivar (TT) to elucidate the molecular basis underlying this variation. The variant displayed a masculinized flower phenotype, characterized by an underdeveloped yet functional gynoecium, with reduced development of the style, stigma and septum, as compared to the complete hermaphroditic flowers typically observed in TT. Genetic analysis of its self-progeny demonstrated the co-segregation of the masculinized flower phenotype with the hermaphrodite allele of the grape sex locus (SDR)[1]. While genome re-sequencing did not identify any genetic variation within the SDR locus, an RNA-seq analysis identified one SDR-located gene over-expressed in the somatic variant compared to a control TT clone. The hermaphrodite allele was specifically over-expressed in the variant. Both Illumina WGBS and Nanopore epigenomic analyses identified a hermaphrodite allele-specific hyper-methylated region upstream of the upregulated gene. Analysis of chromatin conformation capture (3C) revealed a three-dimensional rearrangement of the locus, including the presence of a novel 36 kb chromatin loop delimiting the hyper-methylated region, which could be responsible for the over-expression and the phenotype. These findings indicate that somatic epi-alleles in the SDR locus can determine variation in gynoecium development leading to decreased fruit set and looser bunches in grapevine.

Acknowledgements: This study is part of the projects BIO-2017-86375-R and PID2020-120183RB-I00, and PRE-2018-086017 grant funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This study is also part of the vWISE project.

1)  Massonnet, M., Cochetel, N., Minio, A., Vondras, A. M., Lin, J., Muyle, A., Garcia, J. F., Zhou, Y., Delledonne, M., Riaz, S., Figueroa-Balderas, R., Gaut, B. S., & Cantu, D. (2020). The genetic basis of sex determination in grapes. Nature Communications, 11(1), 1–12. DOI: 10.1038/s41467-020-16700-z

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alañón, Noelia1*; Ferradás, Yolanda2; Lijavetzky, Diego3; Ferrero, Lucía4; Martínez-Zapater, José Miguel1; Ariel, Federico4; Carbonell-Bejerano, Pablo1; Ibáñez, Javier1

1 Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-CAR-UR), Departamento de Viticultura, Logroño, Spain
2 Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
3 Instituto de Biología Agrícola de Mendoza (IBAM), CONICET, FCA-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
4 Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168km 0, 3000, Santa Fe, Argentina

Contact the author*

Keywords

bunch compactness, somatic variation, flower development, chromatin conformation, epiallele

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.