terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

Abstract

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

The present work describes an innovative approach in selection for abiotic stress tolerance, performed in experimental populations of several varieties installed according to resolvable row-column designs with 4 to 6 replicates1. Representative samples of the intravarietal variability of three ancient varieties (Uva Cão, Castelão, and Moscatel Graúdo) under conditions of drought and extreme heat were measured for surface leaf temperature (SLT), a parameter that had already been used for the varieties Aragonez2 and Arinto3, with good results. This was complemented with analyses of yield and quality characteristics of the must. Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability4. The genotypes were then ranked according to their level of tolerance to abiotic stress, and the changes in yield and traits of quality of the must were assessed for those genotypes. The results obtained will be the basis to develop, for those varieties, a new type of polyclonal selected material with increased tolerance to abiotic stress, in relation to the average of the varieties.

Acknowledgements: Projects “Conservation and selection of ancient grapevine varieties” (PDR2020-784-042704), “Save the intra-varietal diversity of autochthonous grapevine varieties” (PRR-C05-i03-|-000016); FCT: DL57/2016/CP1382/CT0024 to LC; UIDB/04129/2020 and LEAF Thematic Line Project Clones4ClimateChange.

1)  Gonçalves E. et. al. (2010) Experimental designs for evaluation of genetic variability and selection of ancient grapevine varieties: a simulation study. Heredity, 104: 552–562. DOI: 10.1038/hdy.2009.153

2)  Carvalho L.C. et. al. (2020) Selecting Aragonez genotypes able to outplay climate change driven abiotic stress. Front. Plant Sci., 11: 599230, DOI: 10.3389/fpls.2020.599230

3)  Carvalho L.C. et. al. (2023) Polyclonal selection for abiotic stress tolerance in Arinto: implications in yield and quality of the must. 44th World Congress of Vine and Wine, Cádiz, Spain, 5-9 June.

4)  Gonçalves E. and Martins A. (2019). Genetic gains of selection in ancient grapevine cultivars. Acta Hortic., 1248, 47–54. DOI: 10.17660/ActaHortic.2019.1248.7

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Luísa Carvalho1, Teresa Pinto2, Joana Ribeiro1, J. Miguel Costa1, Antero Martins1,2, Elsa Gonçalves1,2

1LEAF- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA; Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
2Associação Portuguesa para a Diversidade da Videira – PORVID, Lisboa, Portugal

Contact the author*

Keywords

abiotic stress, grapevine, intravarietal variability, polyclonal selection, surface leaf temperature

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.