terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

Abstract

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

The present work describes an innovative approach in selection for abiotic stress tolerance, performed in experimental populations of several varieties installed according to resolvable row-column designs with 4 to 6 replicates1. Representative samples of the intravarietal variability of three ancient varieties (Uva Cão, Castelão, and Moscatel Graúdo) under conditions of drought and extreme heat were measured for surface leaf temperature (SLT), a parameter that had already been used for the varieties Aragonez2 and Arinto3, with good results. This was complemented with analyses of yield and quality characteristics of the must. Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability4. The genotypes were then ranked according to their level of tolerance to abiotic stress, and the changes in yield and traits of quality of the must were assessed for those genotypes. The results obtained will be the basis to develop, for those varieties, a new type of polyclonal selected material with increased tolerance to abiotic stress, in relation to the average of the varieties.

Acknowledgements: Projects “Conservation and selection of ancient grapevine varieties” (PDR2020-784-042704), “Save the intra-varietal diversity of autochthonous grapevine varieties” (PRR-C05-i03-|-000016); FCT: DL57/2016/CP1382/CT0024 to LC; UIDB/04129/2020 and LEAF Thematic Line Project Clones4ClimateChange.

1)  Gonçalves E. et. al. (2010) Experimental designs for evaluation of genetic variability and selection of ancient grapevine varieties: a simulation study. Heredity, 104: 552–562. DOI: 10.1038/hdy.2009.153

2)  Carvalho L.C. et. al. (2020) Selecting Aragonez genotypes able to outplay climate change driven abiotic stress. Front. Plant Sci., 11: 599230, DOI: 10.3389/fpls.2020.599230

3)  Carvalho L.C. et. al. (2023) Polyclonal selection for abiotic stress tolerance in Arinto: implications in yield and quality of the must. 44th World Congress of Vine and Wine, Cádiz, Spain, 5-9 June.

4)  Gonçalves E. and Martins A. (2019). Genetic gains of selection in ancient grapevine cultivars. Acta Hortic., 1248, 47–54. DOI: 10.17660/ActaHortic.2019.1248.7

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Luísa Carvalho1, Teresa Pinto2, Joana Ribeiro1, J. Miguel Costa1, Antero Martins1,2, Elsa Gonçalves1,2

1LEAF- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA; Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
2Associação Portuguesa para a Diversidade da Videira – PORVID, Lisboa, Portugal

Contact the author*

Keywords

abiotic stress, grapevine, intravarietal variability, polyclonal selection, surface leaf temperature

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.