terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

Abstract

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

The present work describes an innovative approach in selection for abiotic stress tolerance, performed in experimental populations of several varieties installed according to resolvable row-column designs with 4 to 6 replicates1. Representative samples of the intravarietal variability of three ancient varieties (Uva Cão, Castelão, and Moscatel Graúdo) under conditions of drought and extreme heat were measured for surface leaf temperature (SLT), a parameter that had already been used for the varieties Aragonez2 and Arinto3, with good results. This was complemented with analyses of yield and quality characteristics of the must. Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability4. The genotypes were then ranked according to their level of tolerance to abiotic stress, and the changes in yield and traits of quality of the must were assessed for those genotypes. The results obtained will be the basis to develop, for those varieties, a new type of polyclonal selected material with increased tolerance to abiotic stress, in relation to the average of the varieties.

Acknowledgements: Projects “Conservation and selection of ancient grapevine varieties” (PDR2020-784-042704), “Save the intra-varietal diversity of autochthonous grapevine varieties” (PRR-C05-i03-|-000016); FCT: DL57/2016/CP1382/CT0024 to LC; UIDB/04129/2020 and LEAF Thematic Line Project Clones4ClimateChange.

1)  Gonçalves E. et. al. (2010) Experimental designs for evaluation of genetic variability and selection of ancient grapevine varieties: a simulation study. Heredity, 104: 552–562. DOI: 10.1038/hdy.2009.153

2)  Carvalho L.C. et. al. (2020) Selecting Aragonez genotypes able to outplay climate change driven abiotic stress. Front. Plant Sci., 11: 599230, DOI: 10.3389/fpls.2020.599230

3)  Carvalho L.C. et. al. (2023) Polyclonal selection for abiotic stress tolerance in Arinto: implications in yield and quality of the must. 44th World Congress of Vine and Wine, Cádiz, Spain, 5-9 June.

4)  Gonçalves E. and Martins A. (2019). Genetic gains of selection in ancient grapevine cultivars. Acta Hortic., 1248, 47–54. DOI: 10.17660/ActaHortic.2019.1248.7

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Luísa Carvalho1, Teresa Pinto2, Joana Ribeiro1, J. Miguel Costa1, Antero Martins1,2, Elsa Gonçalves1,2

1LEAF- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA; Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
2Associação Portuguesa para a Diversidade da Videira – PORVID, Lisboa, Portugal

Contact the author*

Keywords

abiotic stress, grapevine, intravarietal variability, polyclonal selection, surface leaf temperature

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements. In each condition, the same two wines were blind tasted: a wine previously defined as delicate – a Pinot Noir from Australia, and a wine known for its robust character – a Tannat from Uruguay.

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.