terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

Abstract

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

The present work describes an innovative approach in selection for abiotic stress tolerance, performed in experimental populations of several varieties installed according to resolvable row-column designs with 4 to 6 replicates1. Representative samples of the intravarietal variability of three ancient varieties (Uva Cão, Castelão, and Moscatel Graúdo) under conditions of drought and extreme heat were measured for surface leaf temperature (SLT), a parameter that had already been used for the varieties Aragonez2 and Arinto3, with good results. This was complemented with analyses of yield and quality characteristics of the must. Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability4. The genotypes were then ranked according to their level of tolerance to abiotic stress, and the changes in yield and traits of quality of the must were assessed for those genotypes. The results obtained will be the basis to develop, for those varieties, a new type of polyclonal selected material with increased tolerance to abiotic stress, in relation to the average of the varieties.

Acknowledgements: Projects “Conservation and selection of ancient grapevine varieties” (PDR2020-784-042704), “Save the intra-varietal diversity of autochthonous grapevine varieties” (PRR-C05-i03-|-000016); FCT: DL57/2016/CP1382/CT0024 to LC; UIDB/04129/2020 and LEAF Thematic Line Project Clones4ClimateChange.

1)  Gonçalves E. et. al. (2010) Experimental designs for evaluation of genetic variability and selection of ancient grapevine varieties: a simulation study. Heredity, 104: 552–562. DOI: 10.1038/hdy.2009.153

2)  Carvalho L.C. et. al. (2020) Selecting Aragonez genotypes able to outplay climate change driven abiotic stress. Front. Plant Sci., 11: 599230, DOI: 10.3389/fpls.2020.599230

3)  Carvalho L.C. et. al. (2023) Polyclonal selection for abiotic stress tolerance in Arinto: implications in yield and quality of the must. 44th World Congress of Vine and Wine, Cádiz, Spain, 5-9 June.

4)  Gonçalves E. and Martins A. (2019). Genetic gains of selection in ancient grapevine cultivars. Acta Hortic., 1248, 47–54. DOI: 10.17660/ActaHortic.2019.1248.7

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Luísa Carvalho1, Teresa Pinto2, Joana Ribeiro1, J. Miguel Costa1, Antero Martins1,2, Elsa Gonçalves1,2

1LEAF- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA; Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
2Associação Portuguesa para a Diversidade da Videira – PORVID, Lisboa, Portugal

Contact the author*

Keywords

abiotic stress, grapevine, intravarietal variability, polyclonal selection, surface leaf temperature

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.