terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Abstract

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks). Ancient varieties’ wide genetic pool becomes a significant resource for the production of premium wines with sustainable yields. An end-to-end wine pilot climate service has been developed in the MED-GOLD project. The MED-GOLD wine climate service offered data at various time scales addressing specific concerns of the wine industry, e.g., suitability of varieties for future climates (Dell’Aquila et al., 2023). In this work, we use the MED-GOLD climate service to evaluate the future suitability of cv. Tinta Roriz (syn. Tempranillo) for the Douro wine region of Portugal. Comparison of high-resolution (1 km2) maps of areas with adequate growing season average temperature between the past and two periods until the end of the century, shows that variety is becoming unsuitable for quality wine in more than 90% of the present-day wine region area. The same approach can be used to identify which varieties show better adaptive profile and inform farmers’ choices for the future.

Acknowledgements: the MED-GOLD project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant agreement No.776467.

1) Van Leeuwen, C., Destrac-Irvine, A., Dubernet, M., Duchêne, E., Gowdy, M., Marguerit, E., Pieri, P., Parker, A., de Resseguier, L. & Ollat, N. (2019). An update on the impact of climate change in viticulture and potential adaptations. Agronomy, 9(9), 514, DOI10.3390/agronomy9090514

2) Santos, J. A., Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., Dinis, L. T., Correia, C., Moriondo, M., Leolini, L., Dibari, C., Costafreda-Aumedes, S., Kartschall, T., Menz, C. & Schultz, H. R. (2020). A review of the potential climate change impacts and adaptation options for European viticulture. Applied Sciences, 10(9), 3092. DOI10.3390/app10093092

3) Dell’Aquila, A., Graça, A., Teixeira, M., Fontes, N., Gonzalez-Reviriego, N., Marcos-Matamoros, R., Chihchung, C., Terrado, M., Giannakopoulos, C., Varotsos, K., Caboni, F., Locci, R., Nanu, M., Porru, S., Argiolas, G., Bruno Soares, M. & Sanderson, M. (2023). Monitoring climate related risk and opportunities for the wine sector: The MED-GOLD pilot service. Climate Services, 30, 100346. DOI 10.1016/j.cliser.2023.100346

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Antonio Graça1*, Sara Silva1, José Manso1, João Vasconcelos Porto1, Natacha Fontes1

1SOGRAPE, Rua 5 de outubro 4527, 4430-809 Avintes, Portugal

Contact the author*

Keywords

climate service, Tempranillo, Douro, wine, adaptation, suitability, sustainability

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.