terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Abstract

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks). Ancient varieties’ wide genetic pool becomes a significant resource for the production of premium wines with sustainable yields. An end-to-end wine pilot climate service has been developed in the MED-GOLD project. The MED-GOLD wine climate service offered data at various time scales addressing specific concerns of the wine industry, e.g., suitability of varieties for future climates (Dell’Aquila et al., 2023). In this work, we use the MED-GOLD climate service to evaluate the future suitability of cv. Tinta Roriz (syn. Tempranillo) for the Douro wine region of Portugal. Comparison of high-resolution (1 km2) maps of areas with adequate growing season average temperature between the past and two periods until the end of the century, shows that variety is becoming unsuitable for quality wine in more than 90% of the present-day wine region area. The same approach can be used to identify which varieties show better adaptive profile and inform farmers’ choices for the future.

Acknowledgements: the MED-GOLD project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant agreement No.776467.

1) Van Leeuwen, C., Destrac-Irvine, A., Dubernet, M., Duchêne, E., Gowdy, M., Marguerit, E., Pieri, P., Parker, A., de Resseguier, L. & Ollat, N. (2019). An update on the impact of climate change in viticulture and potential adaptations. Agronomy, 9(9), 514, DOI10.3390/agronomy9090514

2) Santos, J. A., Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., Dinis, L. T., Correia, C., Moriondo, M., Leolini, L., Dibari, C., Costafreda-Aumedes, S., Kartschall, T., Menz, C. & Schultz, H. R. (2020). A review of the potential climate change impacts and adaptation options for European viticulture. Applied Sciences, 10(9), 3092. DOI10.3390/app10093092

3) Dell’Aquila, A., Graça, A., Teixeira, M., Fontes, N., Gonzalez-Reviriego, N., Marcos-Matamoros, R., Chihchung, C., Terrado, M., Giannakopoulos, C., Varotsos, K., Caboni, F., Locci, R., Nanu, M., Porru, S., Argiolas, G., Bruno Soares, M. & Sanderson, M. (2023). Monitoring climate related risk and opportunities for the wine sector: The MED-GOLD pilot service. Climate Services, 30, 100346. DOI 10.1016/j.cliser.2023.100346

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Antonio Graça1*, Sara Silva1, José Manso1, João Vasconcelos Porto1, Natacha Fontes1

1SOGRAPE, Rua 5 de outubro 4527, 4430-809 Avintes, Portugal

Contact the author*

Keywords

climate service, Tempranillo, Douro, wine, adaptation, suitability, sustainability

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).