terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Abstract

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks). Ancient varieties’ wide genetic pool becomes a significant resource for the production of premium wines with sustainable yields. An end-to-end wine pilot climate service has been developed in the MED-GOLD project. The MED-GOLD wine climate service offered data at various time scales addressing specific concerns of the wine industry, e.g., suitability of varieties for future climates (Dell’Aquila et al., 2023). In this work, we use the MED-GOLD climate service to evaluate the future suitability of cv. Tinta Roriz (syn. Tempranillo) for the Douro wine region of Portugal. Comparison of high-resolution (1 km2) maps of areas with adequate growing season average temperature between the past and two periods until the end of the century, shows that variety is becoming unsuitable for quality wine in more than 90% of the present-day wine region area. The same approach can be used to identify which varieties show better adaptive profile and inform farmers’ choices for the future.

Acknowledgements: the MED-GOLD project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant agreement No.776467.

1) Van Leeuwen, C., Destrac-Irvine, A., Dubernet, M., Duchêne, E., Gowdy, M., Marguerit, E., Pieri, P., Parker, A., de Resseguier, L. & Ollat, N. (2019). An update on the impact of climate change in viticulture and potential adaptations. Agronomy, 9(9), 514, DOI10.3390/agronomy9090514

2) Santos, J. A., Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., Dinis, L. T., Correia, C., Moriondo, M., Leolini, L., Dibari, C., Costafreda-Aumedes, S., Kartschall, T., Menz, C. & Schultz, H. R. (2020). A review of the potential climate change impacts and adaptation options for European viticulture. Applied Sciences, 10(9), 3092. DOI10.3390/app10093092

3) Dell’Aquila, A., Graça, A., Teixeira, M., Fontes, N., Gonzalez-Reviriego, N., Marcos-Matamoros, R., Chihchung, C., Terrado, M., Giannakopoulos, C., Varotsos, K., Caboni, F., Locci, R., Nanu, M., Porru, S., Argiolas, G., Bruno Soares, M. & Sanderson, M. (2023). Monitoring climate related risk and opportunities for the wine sector: The MED-GOLD pilot service. Climate Services, 30, 100346. DOI 10.1016/j.cliser.2023.100346

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Antonio Graça1*, Sara Silva1, José Manso1, João Vasconcelos Porto1, Natacha Fontes1

1SOGRAPE, Rua 5 de outubro 4527, 4430-809 Avintes, Portugal

Contact the author*

Keywords

climate service, Tempranillo, Douro, wine, adaptation, suitability, sustainability

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Overall conceptual characterization of aged dry white wines using a mental descriptive questionnaire

The purpose of the present study was to understand the overall concept of an aged dry white wine using a descriptive mental questionnaire. A total of 680 worldwide participants, grouped according to their involvement in the wine business, replied to an online questionnaire to characterize the sensory analytical and synthetic descriptors of an aged dry white wine. The descriptors were selected using a Check-All-That-Apply (CATA) approach concerning wine colour, aroma, taste, mouthfeel, and global appreciation.

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.