terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Cumulative effect of deficit irrigation and salinity on vine responses

Cumulative effect of deficit irrigation and salinity on vine responses

Abstract

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen). The experiment was carried out in 2020 in a vineyard with a 22 factorial design located in Moncada, Valencia, Spain. The factors studied were two sustained irrigation regimes (100% and 50% of crop water needs) with two water salinity levels (EC of 0.8 and 3.5 dS m1). Results showed that water deficit significantly impacted vine water relations and leaf gas exchange at the beginning of the season, but that throughout the season the vine adapted to water availability by regulating vigor. Total leaf area was also reduced by salt stress. However, the effect of salinity on vine water status became more evident as the season progressed. Despite the osmotic adjustment caused by both water deficit and salinity, the strong relationship between soil water potential (YPD) and gas exchange rates revealed the cumulative effect of both factors on vine water status. Similarly, chloride content was increased by the effect of salinity but also of water deficit in leaf and petiole, as well as in grape. Cumulative effects were also observed in the reduction of berry mass and in the increase of total soluble solids and must pH, but not in vine yield. These results evidence the importance of assessing abiotic stresses in combination. Experiments are ongoing to evaluate the effect on the agronomic response and possible carry-over effects.

Acknowledgements: This research has been funded by the Agencia Estatal de Investigación with FEDER (grant number PID2021–123305OB-C31).

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

I. Buesa1,2 *, M. Tasa1, J.M de Paz1, F. Visconti1,3, M.A. Martínez-Gimeno1, E. Badal1, L. Bonet1, D.S. Intrigliolo3 and J.G. Pérez-Pérez1

Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo Agricultura Sostenible, Apartado Oficial 46113, Moncada, Valencia.
2 Grupo de investigación de Biología de las Plantas en Condiciones Mediterráneas-Universidad de las Islas Baleares (PlantMed-UIB), Cra. de Valldemossa, km 7.5, 07122, Palma.
3 CSIC, Departamento de Ecología, Centro de Investigación sobre Desertificación (CSIC-UV-GV), Carretera CV‑315, km 10.7, 46113 Moncada, Valencia.

Contact the author*

Keywords

gas exchange, osmotic adjustment, Vitis vinifera L, water relations

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.