terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Cumulative effect of deficit irrigation and salinity on vine responses

Cumulative effect of deficit irrigation and salinity on vine responses

Abstract

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen). The experiment was carried out in 2020 in a vineyard with a 22 factorial design located in Moncada, Valencia, Spain. The factors studied were two sustained irrigation regimes (100% and 50% of crop water needs) with two water salinity levels (EC of 0.8 and 3.5 dS m1). Results showed that water deficit significantly impacted vine water relations and leaf gas exchange at the beginning of the season, but that throughout the season the vine adapted to water availability by regulating vigor. Total leaf area was also reduced by salt stress. However, the effect of salinity on vine water status became more evident as the season progressed. Despite the osmotic adjustment caused by both water deficit and salinity, the strong relationship between soil water potential (YPD) and gas exchange rates revealed the cumulative effect of both factors on vine water status. Similarly, chloride content was increased by the effect of salinity but also of water deficit in leaf and petiole, as well as in grape. Cumulative effects were also observed in the reduction of berry mass and in the increase of total soluble solids and must pH, but not in vine yield. These results evidence the importance of assessing abiotic stresses in combination. Experiments are ongoing to evaluate the effect on the agronomic response and possible carry-over effects.

Acknowledgements: This research has been funded by the Agencia Estatal de Investigación with FEDER (grant number PID2021–123305OB-C31).

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

I. Buesa1,2 *, M. Tasa1, J.M de Paz1, F. Visconti1,3, M.A. Martínez-Gimeno1, E. Badal1, L. Bonet1, D.S. Intrigliolo3 and J.G. Pérez-Pérez1

Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo Agricultura Sostenible, Apartado Oficial 46113, Moncada, Valencia.
2 Grupo de investigación de Biología de las Plantas en Condiciones Mediterráneas-Universidad de las Islas Baleares (PlantMed-UIB), Cra. de Valldemossa, km 7.5, 07122, Palma.
3 CSIC, Departamento de Ecología, Centro de Investigación sobre Desertificación (CSIC-UV-GV), Carretera CV‑315, km 10.7, 46113 Moncada, Valencia.

Contact the author*

Keywords

gas exchange, osmotic adjustment, Vitis vinifera L, water relations

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.