terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Cumulative effect of deficit irrigation and salinity on vine responses

Cumulative effect of deficit irrigation and salinity on vine responses

Abstract

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen). The experiment was carried out in 2020 in a vineyard with a 22 factorial design located in Moncada, Valencia, Spain. The factors studied were two sustained irrigation regimes (100% and 50% of crop water needs) with two water salinity levels (EC of 0.8 and 3.5 dS m1). Results showed that water deficit significantly impacted vine water relations and leaf gas exchange at the beginning of the season, but that throughout the season the vine adapted to water availability by regulating vigor. Total leaf area was also reduced by salt stress. However, the effect of salinity on vine water status became more evident as the season progressed. Despite the osmotic adjustment caused by both water deficit and salinity, the strong relationship between soil water potential (YPD) and gas exchange rates revealed the cumulative effect of both factors on vine water status. Similarly, chloride content was increased by the effect of salinity but also of water deficit in leaf and petiole, as well as in grape. Cumulative effects were also observed in the reduction of berry mass and in the increase of total soluble solids and must pH, but not in vine yield. These results evidence the importance of assessing abiotic stresses in combination. Experiments are ongoing to evaluate the effect on the agronomic response and possible carry-over effects.

Acknowledgements: This research has been funded by the Agencia Estatal de Investigación with FEDER (grant number PID2021–123305OB-C31).

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

I. Buesa1,2 *, M. Tasa1, J.M de Paz1, F. Visconti1,3, M.A. Martínez-Gimeno1, E. Badal1, L. Bonet1, D.S. Intrigliolo3 and J.G. Pérez-Pérez1

Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo Agricultura Sostenible, Apartado Oficial 46113, Moncada, Valencia.
2 Grupo de investigación de Biología de las Plantas en Condiciones Mediterráneas-Universidad de las Islas Baleares (PlantMed-UIB), Cra. de Valldemossa, km 7.5, 07122, Palma.
3 CSIC, Departamento de Ecología, Centro de Investigación sobre Desertificación (CSIC-UV-GV), Carretera CV‑315, km 10.7, 46113 Moncada, Valencia.

Contact the author*

Keywords

gas exchange, osmotic adjustment, Vitis vinifera L, water relations

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.