terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Cumulative effect of deficit irrigation and salinity on vine responses

Cumulative effect of deficit irrigation and salinity on vine responses

Abstract

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen). The experiment was carried out in 2020 in a vineyard with a 22 factorial design located in Moncada, Valencia, Spain. The factors studied were two sustained irrigation regimes (100% and 50% of crop water needs) with two water salinity levels (EC of 0.8 and 3.5 dS m1). Results showed that water deficit significantly impacted vine water relations and leaf gas exchange at the beginning of the season, but that throughout the season the vine adapted to water availability by regulating vigor. Total leaf area was also reduced by salt stress. However, the effect of salinity on vine water status became more evident as the season progressed. Despite the osmotic adjustment caused by both water deficit and salinity, the strong relationship between soil water potential (YPD) and gas exchange rates revealed the cumulative effect of both factors on vine water status. Similarly, chloride content was increased by the effect of salinity but also of water deficit in leaf and petiole, as well as in grape. Cumulative effects were also observed in the reduction of berry mass and in the increase of total soluble solids and must pH, but not in vine yield. These results evidence the importance of assessing abiotic stresses in combination. Experiments are ongoing to evaluate the effect on the agronomic response and possible carry-over effects.

Acknowledgements: This research has been funded by the Agencia Estatal de Investigación with FEDER (grant number PID2021–123305OB-C31).

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

I. Buesa1,2 *, M. Tasa1, J.M de Paz1, F. Visconti1,3, M.A. Martínez-Gimeno1, E. Badal1, L. Bonet1, D.S. Intrigliolo3 and J.G. Pérez-Pérez1

Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo Agricultura Sostenible, Apartado Oficial 46113, Moncada, Valencia.
2 Grupo de investigación de Biología de las Plantas en Condiciones Mediterráneas-Universidad de las Islas Baleares (PlantMed-UIB), Cra. de Valldemossa, km 7.5, 07122, Palma.
3 CSIC, Departamento de Ecología, Centro de Investigación sobre Desertificación (CSIC-UV-GV), Carretera CV‑315, km 10.7, 46113 Moncada, Valencia.

Contact the author*

Keywords

gas exchange, osmotic adjustment, Vitis vinifera L, water relations

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).