terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Abstract

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards. The aims of this work were to study the effect of mulches of different nature on grapevine water status and yield, as well as, berry quality and, to assess their impact on heterotrophic bacterial communities. The experiment was carried out in a commercial vineyard in Olite/Erriberri (Navarra, Spain) with cv. Tempranillo. Five different mulches were applied (grapevine pruning waste, almond shell, pine bark, wood waste, and straw), and compared to a control (bare soil).

Results showed that grapevine pruning waste and almond shell mulches tended to improve grapevine water status during berry ripening. However, whereas the former increased yield, the latter decreased it. Treatments did not impact on monitored berry quality parameters. In regard to bacterial diversity, all the considered mulches promoted it comparatively to bare soil.

To sum up, mulches might be a sustainable alternative to improve soil characteristics by means of increasing bacterial diversity, with the subsequent improvement of grapevine performance.

Acknowledgements: This work was funded by Navarra Government (project VALORVIT). N. Torres is beneficiary of a Ramón y Cajal Grant RYC2021-034586-I funded by MCIN/AEI/ 10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Iñaki Galech1, Maider Velaz1, Jorge Urrestarazu1,2, Maite Loidi1, Gonzaga Santesteban1,2, Nazareth Torres1,2

1 Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona-Iruña, Navarra, Spain.
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona-Iruña, Spain.

Contact the author*

Keywords

bacterial diversity, circular economy, grapevine quality, Tempranillo, water status

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

How are canned wine drinkers perceived? An investigation involving Swiss nationals and different scenarios of outdoor leisure activities

This study examines how people who consume wine in cans are perceived in terms of their basic personality characteristics, helps understand the role of cultural background on people’s perception, and verify the role played by the consumption context on the perception. Our hypothesis is that prejudice and negative attitudes towards wine in cans might exert a negative effect on the evaluation of people who consume canned wine. To evaluate this hypothesis, the consumption of wine in cans was evoked in four different contexts of use during outdoor leisure activity (beach resort, ski resort, desert safari, and party). In order to examine the effect of culture on subject’s response we use participants from Switzerland, a country where three different cultures, associated with three different languages, cohabit.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.